File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Single-Layer Ternary Chalcogenide Nanosheet as a Fluorescence-Based “Capture-Release” Biomolecular Nanosensor

TitleSingle-Layer Ternary Chalcogenide Nanosheet as a Fluorescence-Based “Capture-Release” Biomolecular Nanosensor
Authors
Keywords2D nanomaterials
biomolecules
fluorescence quenching
nanosensors
transition metal chalcogenides
Issue Date2017
Citation
Small, 2017, v. 13, n. 5, article no. 1601925 How to Cite?
AbstractThe novel application of two-dimensional (2D) single-layer ternary chalcogenide nanosheets as “capture-release” fluorescence-based biomolecular nanosensors is demonstrated. Fluorescently labeled biomolecular probe is first captured by the ultrathin Ta2NiS5 nanosheets and then released upon adding analyte containing a target biomolecule due to the higher probe-target affinity. Here, the authors use a nucleic acid probe for the model target biomolecule Plasmodium lactate dehydrogenase, which is an important malarial biomarker. The ultrathin Ta2NiS5 nanosheet serves as a highly efficient fluorescence quencher and the nanosensor developed from the nanosheet is highly sensitive and specific toward the target biomolecule. Apart from the specificity toward the target biomolecule in homogeneous solutions, the developed nanosensor is capable of detecting and differentiating the target in heterogeneous solutions consisting of either a mixture of biomolecules or serum, with exceptional specificity. The simplicity of the “capture-release” method, by eliminating the need for preincubation of the probe with the test sample, may facilitate further development of portable and rapid biosensors. The authors anticipate that this ternary chalcogenide nanosheet-based biomolecular nanosensor will be useful for the rapid detection and differentiation of a wide range of chemical and biological species.
Persistent Identifierhttp://hdl.handle.net/10722/329425
ISSN
2021 Impact Factor: 15.153
2020 SCImago Journal Rankings: 3.785

 

DC FieldValueLanguage
dc.contributor.authorKenry-
dc.contributor.authorGeldert, Alisha-
dc.contributor.authorLai, Zhuangchai-
dc.contributor.authorHuang, Ying-
dc.contributor.authorYu, Peng-
dc.contributor.authorTan, Chaoliang-
dc.contributor.authorLiu, Zheng-
dc.contributor.authorZhang, Hua-
dc.contributor.authorLim, Chwee Teck-
dc.date.accessioned2023-08-09T03:32:42Z-
dc.date.available2023-08-09T03:32:42Z-
dc.date.issued2017-
dc.identifier.citationSmall, 2017, v. 13, n. 5, article no. 1601925-
dc.identifier.issn1613-6810-
dc.identifier.urihttp://hdl.handle.net/10722/329425-
dc.description.abstractThe novel application of two-dimensional (2D) single-layer ternary chalcogenide nanosheets as “capture-release” fluorescence-based biomolecular nanosensors is demonstrated. Fluorescently labeled biomolecular probe is first captured by the ultrathin Ta2NiS5 nanosheets and then released upon adding analyte containing a target biomolecule due to the higher probe-target affinity. Here, the authors use a nucleic acid probe for the model target biomolecule Plasmodium lactate dehydrogenase, which is an important malarial biomarker. The ultrathin Ta2NiS5 nanosheet serves as a highly efficient fluorescence quencher and the nanosensor developed from the nanosheet is highly sensitive and specific toward the target biomolecule. Apart from the specificity toward the target biomolecule in homogeneous solutions, the developed nanosensor is capable of detecting and differentiating the target in heterogeneous solutions consisting of either a mixture of biomolecules or serum, with exceptional specificity. The simplicity of the “capture-release” method, by eliminating the need for preincubation of the probe with the test sample, may facilitate further development of portable and rapid biosensors. The authors anticipate that this ternary chalcogenide nanosheet-based biomolecular nanosensor will be useful for the rapid detection and differentiation of a wide range of chemical and biological species.-
dc.languageeng-
dc.relation.ispartofSmall-
dc.subject2D nanomaterials-
dc.subjectbiomolecules-
dc.subjectfluorescence quenching-
dc.subjectnanosensors-
dc.subjecttransition metal chalcogenides-
dc.titleSingle-Layer Ternary Chalcogenide Nanosheet as a Fluorescence-Based “Capture-Release” Biomolecular Nanosensor-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1002/smll.201601925-
dc.identifier.pmid27860209-
dc.identifier.scopuseid_2-s2.0-85002990201-
dc.identifier.volume13-
dc.identifier.issue5-
dc.identifier.spagearticle no. 1601925-
dc.identifier.epagearticle no. 1601925-
dc.identifier.eissn1613-6829-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats