File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A Non-Invasive method of quantifying pancreatic volume in mice using micro-MRI

TitleA Non-Invasive method of quantifying pancreatic volume in mice using micro-MRI
Authors
Issue Date2014
Citation
PLoS ONE, 2014, v. 9, n. 3, article no. e92263 How to Cite?
AbstractIn experimental models of pancreatic growth and recovery, changes in pancreatic size are assessed by euthanizing a large cohort of animals at varying time points and measuring organ mass. However, to ascertain this information in clinical practice, patients with pancreatic disorders routinely undergo non-invasive cross-sectional imaging of the pancreas using magnetic resonance imaging (MRI) or computed tomography (CT). The aim of the current study was to develop a thinsliced, optimized sequence protocol using a high field MRI to accurately calculate pancreatic volumes in the most common experimental animal, the mouse. Using a 7 Telsa Bruker micro-MRI system, we performed abdominal imaging in whole-fixed mice in three standard planes: axial, sagittal, and coronal. The contour of the pancreas was traced using Vitrea software and then transformed into a 3-dimensional (3D) reconstruction, from which volumetric measurements were calculated. Images were optimized using heart perfusion-fixation, T1 sequence analysis, and 0.2 to 0.4 mm thick slices. As proof of principle, increases in pancreatic volume among mice of different ages correlated tightly with increasing body weight. In summary, this is the first study to measure pancreatic volumes in mice, using a high field 7 Tesla micro-MRI and a thin-sliced, optimized sequence protocol. We anticipate that micro-MRI will improve the ability to non-invasively quantify changes in pancreatic size and will dramatically reduce the number of animals required to serially assess pancreatic growth and recovery.© 2014 Paredes et al.
Persistent Identifierhttp://hdl.handle.net/10722/316128
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorParedes, Jose L.-
dc.contributor.authorOrabi, Abrahim I.-
dc.contributor.authorAhmad, Taimur-
dc.contributor.authorBenbourenane, Iman-
dc.contributor.authorTobita, Kimimasa-
dc.contributor.authorTadros, Sameh-
dc.contributor.authorBae, Kyongtae T.-
dc.contributor.authorHusain, Sohail Z.-
dc.date.accessioned2022-08-24T15:49:20Z-
dc.date.available2022-08-24T15:49:20Z-
dc.date.issued2014-
dc.identifier.citationPLoS ONE, 2014, v. 9, n. 3, article no. e92263-
dc.identifier.urihttp://hdl.handle.net/10722/316128-
dc.description.abstractIn experimental models of pancreatic growth and recovery, changes in pancreatic size are assessed by euthanizing a large cohort of animals at varying time points and measuring organ mass. However, to ascertain this information in clinical practice, patients with pancreatic disorders routinely undergo non-invasive cross-sectional imaging of the pancreas using magnetic resonance imaging (MRI) or computed tomography (CT). The aim of the current study was to develop a thinsliced, optimized sequence protocol using a high field MRI to accurately calculate pancreatic volumes in the most common experimental animal, the mouse. Using a 7 Telsa Bruker micro-MRI system, we performed abdominal imaging in whole-fixed mice in three standard planes: axial, sagittal, and coronal. The contour of the pancreas was traced using Vitrea software and then transformed into a 3-dimensional (3D) reconstruction, from which volumetric measurements were calculated. Images were optimized using heart perfusion-fixation, T1 sequence analysis, and 0.2 to 0.4 mm thick slices. As proof of principle, increases in pancreatic volume among mice of different ages correlated tightly with increasing body weight. In summary, this is the first study to measure pancreatic volumes in mice, using a high field 7 Tesla micro-MRI and a thin-sliced, optimized sequence protocol. We anticipate that micro-MRI will improve the ability to non-invasively quantify changes in pancreatic size and will dramatically reduce the number of animals required to serially assess pancreatic growth and recovery.© 2014 Paredes et al.-
dc.languageeng-
dc.relation.ispartofPLoS ONE-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleA Non-Invasive method of quantifying pancreatic volume in mice using micro-MRI-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1371/journal.pone.0092263-
dc.identifier.pmid24642611-
dc.identifier.pmcidPMC3958493-
dc.identifier.scopuseid_2-s2.0-84898658027-
dc.identifier.volume9-
dc.identifier.issue3-
dc.identifier.spagearticle no. e92263-
dc.identifier.epagearticle no. e92263-
dc.identifier.eissn1932-6203-
dc.identifier.isiWOS:000333259900113-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats