File Download

There are no files associated with this item.

Supplementary

Conference Paper: Learning Geometry-Disentangled Representation for Complementary Understanding of 3D Object Point Cloud

TitleLearning Geometry-Disentangled Representation for Complementary Understanding of 3D Object Point Cloud
Authors
Issue Date2021
Citation
The Eleventh Symposium on Educational Advances in Artificial Intelligence (EAAI-21) in the 35th Association for the Advancement of Artificial Intelligence (AAAI) Conference on Artificial Intelligence, Virtual Conference, 4-7 February 2021 How to Cite?
AbstractIn 2D image processing, some attempts decompose images into high and low frequency components for describing edge and smooth parts respectively. Similarly, the contour and flat area of 3D objects, such as the boundary and seat area of a chair, describe different but also complementary geometries. However, such investigation is lost in previous deep networks that understand point clouds by directly treating all points or local patches equally. To solve this problem, we propose Geometry-Disentangled Attention Network (GDANet). GDANet introduces Geometry-Disentangle Module to dynamically disentangle point clouds into the contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components. Then GDANet exploits Sharp-Gentle Complementary Attention Module that regards the features from sharp and gentle variation components as two holistic representations, and pays different attentions to them while fusing them respectively with original point cloud features. In this way, our method captures and refines the holistic and complementary 3D geometric semantics from two distinct disentangled components to supplement the local information. Extensive experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters.
DescriptionAAAI Poster Session - Cluster: 3D Computer Vision -AC-D2-R2 - no. AAAI-2650
Persistent Identifierhttp://hdl.handle.net/10722/306552

 

DC FieldValueLanguage
dc.contributor.authorXu, M-
dc.contributor.authorZhang, J-
dc.contributor.authorZhou, Z-
dc.contributor.authorXu, M-
dc.contributor.authorQi, X-
dc.contributor.authorQiao, Y-
dc.date.accessioned2021-10-22T07:36:16Z-
dc.date.available2021-10-22T07:36:16Z-
dc.date.issued2021-
dc.identifier.citationThe Eleventh Symposium on Educational Advances in Artificial Intelligence (EAAI-21) in the 35th Association for the Advancement of Artificial Intelligence (AAAI) Conference on Artificial Intelligence, Virtual Conference, 4-7 February 2021-
dc.identifier.urihttp://hdl.handle.net/10722/306552-
dc.descriptionAAAI Poster Session - Cluster: 3D Computer Vision -AC-D2-R2 - no. AAAI-2650-
dc.description.abstractIn 2D image processing, some attempts decompose images into high and low frequency components for describing edge and smooth parts respectively. Similarly, the contour and flat area of 3D objects, such as the boundary and seat area of a chair, describe different but also complementary geometries. However, such investigation is lost in previous deep networks that understand point clouds by directly treating all points or local patches equally. To solve this problem, we propose Geometry-Disentangled Attention Network (GDANet). GDANet introduces Geometry-Disentangle Module to dynamically disentangle point clouds into the contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components. Then GDANet exploits Sharp-Gentle Complementary Attention Module that regards the features from sharp and gentle variation components as two holistic representations, and pays different attentions to them while fusing them respectively with original point cloud features. In this way, our method captures and refines the holistic and complementary 3D geometric semantics from two distinct disentangled components to supplement the local information. Extensive experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters.-
dc.languageeng-
dc.relation.ispartofAAAI Conference on Artificial Intelligence (AAAI-21) - The Eleventh Symposium on Educational Advances in Artificial Intelligence (EAAI-21)-
dc.titleLearning Geometry-Disentangled Representation for Complementary Understanding of 3D Object Point Cloud-
dc.typeConference_Paper-
dc.identifier.emailQi, X: xjqi@eee.hku.hk-
dc.identifier.authorityQi, X=rp02666-
dc.identifier.hkuros328769-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats