File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Engineering monolayer poration for rapid exfoliation of microbial membranes

TitleEngineering monolayer poration for rapid exfoliation of microbial membranes
Authors
Issue Date2017
Citation
Chemical Science, 2017, v. 8, n. 2, p. 1105-1115 How to Cite?
AbstractThe spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.
Persistent Identifierhttp://hdl.handle.net/10722/301810
ISSN
2021 Impact Factor: 9.969
2020 SCImago Journal Rankings: 3.687
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorPyne, Alice-
dc.contributor.authorPfeil, Marc Philipp-
dc.contributor.authorBennett, Isabel-
dc.contributor.authorRavi, Jascindra-
dc.contributor.authorIavicoli, Patrizia-
dc.contributor.authorLamarre, Baptiste-
dc.contributor.authorRoethke, Anita-
dc.contributor.authorRay, Santanu-
dc.contributor.authorJiang, Haibo-
dc.contributor.authorBella, Angelo-
dc.contributor.authorReisinger, Bernd-
dc.contributor.authorYin, Daniel-
dc.contributor.authorLittle, Benjamin-
dc.contributor.authorMuñoz-García, Juan C.-
dc.contributor.authorCerasoli, Eleonora-
dc.contributor.authorJudge, Peter J.-
dc.contributor.authorFaruqui, Nilofar-
dc.contributor.authorCalzolai, Luigi-
dc.contributor.authorHenrion, Andre-
dc.contributor.authorMartyna, Glenn J.-
dc.contributor.authorGrovenor, Chris R.M.-
dc.contributor.authorCrain, Jason-
dc.contributor.authorHoogenboom, Bart W.-
dc.contributor.authorWatts, Anthony-
dc.contributor.authorRyadnov, Maxim G.-
dc.date.accessioned2021-08-19T02:20:47Z-
dc.date.available2021-08-19T02:20:47Z-
dc.date.issued2017-
dc.identifier.citationChemical Science, 2017, v. 8, n. 2, p. 1105-1115-
dc.identifier.issn2041-6520-
dc.identifier.urihttp://hdl.handle.net/10722/301810-
dc.description.abstractThe spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.-
dc.languageeng-
dc.relation.ispartofChemical Science-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleEngineering monolayer poration for rapid exfoliation of microbial membranes-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1039/C6SC02925F-
dc.identifier.pmid28451250-
dc.identifier.pmcidPMC5369539-
dc.identifier.scopuseid_2-s2.0-85011072528-
dc.identifier.volume8-
dc.identifier.issue2-
dc.identifier.spage1105-
dc.identifier.epage1115-
dc.identifier.eissn2041-6539-
dc.identifier.isiWOS:000395428300030-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats