File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Method for decoupling error correction from privacy amplification

TitleMethod for decoupling error correction from privacy amplification
Authors
Issue Date2003
Citation
New Journal of Physics, 2003, v. 5, article no. 36 How to Cite?
AbstractIn a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof.
Persistent Identifierhttp://hdl.handle.net/10722/285897
ISSN
2021 Impact Factor: 3.716
2020 SCImago Journal Rankings: 1.584
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLo, Hoi Kwong-
dc.date.accessioned2020-08-18T04:56:56Z-
dc.date.available2020-08-18T04:56:56Z-
dc.date.issued2003-
dc.identifier.citationNew Journal of Physics, 2003, v. 5, article no. 36-
dc.identifier.issn1367-2630-
dc.identifier.urihttp://hdl.handle.net/10722/285897-
dc.description.abstractIn a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof.-
dc.languageeng-
dc.relation.ispartofNew Journal of Physics-
dc.titleMethod for decoupling error correction from privacy amplification-
dc.typeArticle-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.doi10.1088/1367-2630/5/1/336-
dc.identifier.scopuseid_2-s2.0-3042620599-
dc.identifier.volume5-
dc.identifier.spagearticle no. 36-
dc.identifier.epagearticle no. 36-
dc.identifier.isiWOS:000182468900001-
dc.identifier.issnl1367-2630-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats