File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Mineralization of perfluorooctanesulfonate (PFOS) and perfluorodecanoate (PFDA) from aqueous solution by porous hexagonal boron nitride: adsorption followed by simultaneous thermal decomposition and regeneration

TitleMineralization of perfluorooctanesulfonate (PFOS) and perfluorodecanoate (PFDA) from aqueous solution by porous hexagonal boron nitride: adsorption followed by simultaneous thermal decomposition and regeneration
Authors
Issue Date2016
PublisherRoyal Society of Chemistry. The Journal's web site is located at http://pubs.rsc.org/en/journals/journalissues/ra
Citation
RSC Advances, 2016, v. 6 n. 114, p. 113773-113780 How to Cite?
AbstractPoly- and perfluoroalkyl substances (PFASs) are of global concern due to their toxicity, high persistency, bioaccumulation, and worldwide occurrence. Boron nitride (BN), consisting of light elements and bearing excellent thermal stability, has shown great potential in wastewater purification as a readily-recyclable sorbent. In this study, porous hexagonal BN nanosheets (h-BNs) were synthesized and for the first time their sorption capacities toward perfluorooctanesulfonate (PFOS) and perfluorodecanoate (PFDA) (two representative PFASs) were evaluated under various solution compositions. The h-BNs used after sorption were regenerated by calcining at 600 °C in air for 20 min. The h-BNs synthesized were found to have fast sorption kinetics for both PFOS and PFDA, and the sorption processes fitted well with the Freundlich model and pseudo-second-order kinetics. Under the conditions of 50 mg L−1 PFDA or PFOS, 0.2 g L−1 h-BNs, and pH 6.0, sorption capacities of ∼0.72 mg m−2 and ∼0.45 mg m−2 were achieved for PFDA and PFOS, respectively. The effects of H+ and Ca2+ showed that electrostatic interactions were responsible for the sorption. The reutilization experiments revealed that the h-BNs had a persistent sorption capacity after three cycles. To reduce the production of fluorine-containing gases, calcium hydroxide was used as a calcination additive and the fluorine-fixing product calcium fluoride was successfully detected. The results suggest that h-BN sorption may be a promising approach for the removal of PFASs from an aqueous solution.
Persistent Identifierhttp://hdl.handle.net/10722/246555
ISSN
2021 Impact Factor: 4.036
2020 SCImago Journal Rankings: 0.746
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorFeng, Y-
dc.contributor.authorZhou, Y-
dc.contributor.authorLee, P.H.-
dc.contributor.authorShih, K-
dc.date.accessioned2017-09-18T02:30:32Z-
dc.date.available2017-09-18T02:30:32Z-
dc.date.issued2016-
dc.identifier.citationRSC Advances, 2016, v. 6 n. 114, p. 113773-113780-
dc.identifier.issn2046-2069-
dc.identifier.urihttp://hdl.handle.net/10722/246555-
dc.description.abstractPoly- and perfluoroalkyl substances (PFASs) are of global concern due to their toxicity, high persistency, bioaccumulation, and worldwide occurrence. Boron nitride (BN), consisting of light elements and bearing excellent thermal stability, has shown great potential in wastewater purification as a readily-recyclable sorbent. In this study, porous hexagonal BN nanosheets (h-BNs) were synthesized and for the first time their sorption capacities toward perfluorooctanesulfonate (PFOS) and perfluorodecanoate (PFDA) (two representative PFASs) were evaluated under various solution compositions. The h-BNs used after sorption were regenerated by calcining at 600 °C in air for 20 min. The h-BNs synthesized were found to have fast sorption kinetics for both PFOS and PFDA, and the sorption processes fitted well with the Freundlich model and pseudo-second-order kinetics. Under the conditions of 50 mg L−1 PFDA or PFOS, 0.2 g L−1 h-BNs, and pH 6.0, sorption capacities of ∼0.72 mg m−2 and ∼0.45 mg m−2 were achieved for PFDA and PFOS, respectively. The effects of H+ and Ca2+ showed that electrostatic interactions were responsible for the sorption. The reutilization experiments revealed that the h-BNs had a persistent sorption capacity after three cycles. To reduce the production of fluorine-containing gases, calcium hydroxide was used as a calcination additive and the fluorine-fixing product calcium fluoride was successfully detected. The results suggest that h-BN sorption may be a promising approach for the removal of PFASs from an aqueous solution.-
dc.languageeng-
dc.publisherRoyal Society of Chemistry. The Journal's web site is located at http://pubs.rsc.org/en/journals/journalissues/ra-
dc.relation.ispartofRSC Advances-
dc.titleMineralization of perfluorooctanesulfonate (PFOS) and perfluorodecanoate (PFDA) from aqueous solution by porous hexagonal boron nitride: adsorption followed by simultaneous thermal decomposition and regeneration-
dc.typeArticle-
dc.identifier.emailShih, K: kshih@hku.hk-
dc.identifier.authorityShih, K=rp00167-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.doi10.1039/C6RA15564B-
dc.identifier.scopuseid_2-s2.0-85002271253-
dc.identifier.hkuros276781-
dc.identifier.volume6-
dc.identifier.issue114-
dc.identifier.spage113773-
dc.identifier.epage113780-
dc.identifier.isiWOS:000389905300120-
dc.publisher.placeUnited Kingdom-
dc.identifier.issnl2046-2069-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats