File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Serine peptidase inhibitor Kazal type 1 (SPINK1) as novel downstream effector of the cadherin-17/β-catenin axis in hepatocellular carcinoma

TitleSerine peptidase inhibitor Kazal type 1 (SPINK1) as novel downstream effector of the cadherin-17/β-catenin axis in hepatocellular carcinoma
Authors
KeywordsCDH17
CDH17/β-catenin axis
HCC
SPINK1
Issue Date2017
PublisherIOS Press. The Journal's web site is located at http://www.iospress.nl/html/15705870.php
Citation
Cellular Oncology, 2017, v. 40 n. 5, p. 443-456 How to Cite?
AbstractBackground: Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. Previously, we reported that cadherin-17 (CDH17) and its related CDH17/β-catenin axis may be responsible for inducing HCC in a subset of patients exhibiting CDH17 over-expression. Here we aimed at obtaining a better understanding of the CDH17-related HCC biology and to obtain further indications for the design of targeted therapies in CDH17 over-expressing HCC patients. Results: We found that SPINK1 acts as a downstream effector of the CDH17/β-catenin axis in HCC. In addition, we found that SPINK1 expression exhibited a positive correlation with CDH17 expression in human HCCs and was over-expressed in up to 70% of the tumors. We identified SPINK1 as a downstream effector of the CDH17/β-catenin axis using a spectrum of in vitro assays, including gene expression modulation and inhibitor assays, bioinformatics analyses and luciferase reporter assays. These in vitro results were validated in primary human HCCs, including the observation that alteration in β-catenin expression (a core component of the CDH17/β-catenin axis) in tumors affects SPINK1 serum levels in HCC patients. Similar to CDH17, SPINK1 expression in HCC cells was found to be associated with specific tumor-related properties via activating the c-Raf/MEK/ERK pathway. Conclusions: Our current data substantiate our knowledge on the role of CDH17 in the biology of HCC and suggest that components of the CDH17/β-catenin axis may serve as therapeutic targets in CDH17 over-expressing HCC patients. © 2017, International Society for Cellular Oncology.
Persistent Identifierhttp://hdl.handle.net/10722/243855
ISSN
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorSHEK, HP-
dc.contributor.authorLuo, R-
dc.contributor.authorLam, BYH-
dc.contributor.authorSung, WK-
dc.contributor.authorLam, TW-
dc.contributor.authorLuk, JMC-
dc.contributor.authorLeung, MS-
dc.contributor.authorChan, KT-
dc.contributor.authorWang, KSH-
dc.contributor.authorChan, CMG-
dc.contributor.authorPoon, RTP-
dc.contributor.authorLee, NPY-
dc.date.accessioned2017-08-25T03:00:24Z-
dc.date.available2017-08-25T03:00:24Z-
dc.date.issued2017-
dc.identifier.citationCellular Oncology, 2017, v. 40 n. 5, p. 443-456-
dc.identifier.issn1570-5870-
dc.identifier.urihttp://hdl.handle.net/10722/243855-
dc.description.abstractBackground: Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. Previously, we reported that cadherin-17 (CDH17) and its related CDH17/β-catenin axis may be responsible for inducing HCC in a subset of patients exhibiting CDH17 over-expression. Here we aimed at obtaining a better understanding of the CDH17-related HCC biology and to obtain further indications for the design of targeted therapies in CDH17 over-expressing HCC patients. Results: We found that SPINK1 acts as a downstream effector of the CDH17/β-catenin axis in HCC. In addition, we found that SPINK1 expression exhibited a positive correlation with CDH17 expression in human HCCs and was over-expressed in up to 70% of the tumors. We identified SPINK1 as a downstream effector of the CDH17/β-catenin axis using a spectrum of in vitro assays, including gene expression modulation and inhibitor assays, bioinformatics analyses and luciferase reporter assays. These in vitro results were validated in primary human HCCs, including the observation that alteration in β-catenin expression (a core component of the CDH17/β-catenin axis) in tumors affects SPINK1 serum levels in HCC patients. Similar to CDH17, SPINK1 expression in HCC cells was found to be associated with specific tumor-related properties via activating the c-Raf/MEK/ERK pathway. Conclusions: Our current data substantiate our knowledge on the role of CDH17 in the biology of HCC and suggest that components of the CDH17/β-catenin axis may serve as therapeutic targets in CDH17 over-expressing HCC patients. © 2017, International Society for Cellular Oncology.-
dc.languageeng-
dc.publisherIOS Press. The Journal's web site is located at http://www.iospress.nl/html/15705870.php-
dc.relation.ispartofCellular Oncology-
dc.subjectCDH17-
dc.subjectCDH17/β-catenin axis-
dc.subjectHCC-
dc.subjectSPINK1-
dc.titleSerine peptidase inhibitor Kazal type 1 (SPINK1) as novel downstream effector of the cadherin-17/β-catenin axis in hepatocellular carcinoma-
dc.typeArticle-
dc.identifier.emailLam, TW: twlam@cs.hku.hk-
dc.identifier.emailLuk, JMC: jmluk@hku.hk-
dc.identifier.emailLeung, MS: lms1994@HKUCC-COM.hku.hk-
dc.identifier.emailChan, KT: ktchan66@hku.hk-
dc.identifier.emailWang, KSH: hector84@hku.hk-
dc.identifier.emailChan, CMG: guschan1@hku.hk-
dc.identifier.emailPoon, RTP: poontp@hku.hk-
dc.identifier.emailLee, NPY: nikkilee@hku.hk-
dc.identifier.authorityLuo, R=rp02360-
dc.identifier.authorityLam, TW=rp00135-
dc.identifier.authorityLuk, JMC=rp00349-
dc.identifier.authorityPoon, RTP=rp00446-
dc.identifier.authorityLee, NPY=rp00263-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1007/s13402-017-0332-x-
dc.identifier.pmid28631187-
dc.identifier.scopuseid_2-s2.0-85021134674-
dc.identifier.hkuros274744-
dc.identifier.volume40-
dc.identifier.issue5-
dc.identifier.spage443-
dc.identifier.epage456-
dc.identifier.isiWOS:000411570200002-
dc.publisher.placeNetherlands-
dc.identifier.issnl1570-5870-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats