File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Transcriptome exploration for further understanding of the tropane alkaloids biosynthesis in Anisodus acutangulus

TitleTranscriptome exploration for further understanding of the tropane alkaloids biosynthesis in Anisodus acutangulus
Authors
Issue Date2015
PublisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00438/index.htm
Citation
Molecular Genetics and Genomics, 2015, v. 290 n. 4, p. 1367-1377 How to Cite?
AbstractTropane alkaloids (TAs) such as anisodamine, anisodine, hyoscyamine and scopolamine are extensively used in clinical practice as anticholinergic agents. Anisodus acutangulus produces TAs in root tissue, and although several genes involved in scopolamine biosynthesis have been cloned, yet the biosynthetic pathway of TAs remains poorly understood. To further understand TAs biosynthesis mechanism, transcriptome analysis with deep RNA sequencing in A. acutangulus roots was performed in this study; 48 unigenes related to tropane, piperidine and pyridine alkaloid biosynthesis, 145 linked to the distribution of arginine to TAs biosynthesis, and 86 categorized to terpenoid backbone biosynthesis have been identified in pathway enrichment analyses with eukaryotic orthologous groups (KOG) and Kyoto encyclopedia of genes and genomes. Additionally, 82 unigenes annotated as cytochrome P450 family members seemed to be involved in secondary metabolism. Genes encoding littorine mutase/monooxygenase (CYP80F1), diamine oxidase (DAO), alcohol dehydrogenase (ADH) and aromatic amino acid aminotransferase (ArAT) may also play roles in TAs biosynthetic pathways. Furthermore, over 1,000 unigenes were identified as potential transcription factors of WRKY, AP2/ERF, MYB and bHLH families, which would be helpful to understand transcriptional regulation of secondary metabolite biosynthesis. These data enable novel insights into A. acutangulus transcriptome, updating the knowledge of TAs biosynthetic mechanism at molecular level.
Persistent Identifierhttp://hdl.handle.net/10722/232913
ISSN
2015 Impact Factor: 2.622
2015 SCImago Journal Rankings: 1.043

 

DC FieldValueLanguage
dc.contributor.authorCui, L-
dc.contributor.authorHuang, F-
dc.contributor.authorZhang, D-
dc.contributor.authorLin, Y-
dc.contributor.authorLiao, P-
dc.contributor.authorZong, J-
dc.contributor.authorKai, G-
dc.date.accessioned2016-09-20T05:33:20Z-
dc.date.available2016-09-20T05:33:20Z-
dc.date.issued2015-
dc.identifier.citationMolecular Genetics and Genomics, 2015, v. 290 n. 4, p. 1367-1377-
dc.identifier.issn1617-4615-
dc.identifier.urihttp://hdl.handle.net/10722/232913-
dc.description.abstractTropane alkaloids (TAs) such as anisodamine, anisodine, hyoscyamine and scopolamine are extensively used in clinical practice as anticholinergic agents. Anisodus acutangulus produces TAs in root tissue, and although several genes involved in scopolamine biosynthesis have been cloned, yet the biosynthetic pathway of TAs remains poorly understood. To further understand TAs biosynthesis mechanism, transcriptome analysis with deep RNA sequencing in A. acutangulus roots was performed in this study; 48 unigenes related to tropane, piperidine and pyridine alkaloid biosynthesis, 145 linked to the distribution of arginine to TAs biosynthesis, and 86 categorized to terpenoid backbone biosynthesis have been identified in pathway enrichment analyses with eukaryotic orthologous groups (KOG) and Kyoto encyclopedia of genes and genomes. Additionally, 82 unigenes annotated as cytochrome P450 family members seemed to be involved in secondary metabolism. Genes encoding littorine mutase/monooxygenase (CYP80F1), diamine oxidase (DAO), alcohol dehydrogenase (ADH) and aromatic amino acid aminotransferase (ArAT) may also play roles in TAs biosynthetic pathways. Furthermore, over 1,000 unigenes were identified as potential transcription factors of WRKY, AP2/ERF, MYB and bHLH families, which would be helpful to understand transcriptional regulation of secondary metabolite biosynthesis. These data enable novel insights into A. acutangulus transcriptome, updating the knowledge of TAs biosynthetic mechanism at molecular level.-
dc.languageeng-
dc.publisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00438/index.htm-
dc.relation.ispartofMolecular Genetics and Genomics-
dc.rightsThe final publication is available at Springer via http://dx.doi.org/[insert DOI]-
dc.titleTranscriptome exploration for further understanding of the tropane alkaloids biosynthesis in Anisodus acutangulus-
dc.typeArticle-
dc.identifier.emailLiao, P: h1092030@connect.hku.hk-
dc.identifier.doi10.1007/s00438-015-1005-y-
dc.identifier.hkuros267128-
dc.identifier.volume290-
dc.identifier.issue4-
dc.identifier.spage1367-
dc.identifier.epage1377-
dc.publisher.placeGermany-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats