File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On the local well-posedness of the prandtl and hydrostatic euler equations with multiple monotonicity regions

TitleOn the local well-posedness of the prandtl and hydrostatic euler equations with multiple monotonicity regions
Authors
KeywordsBoundary layer
Issue Date2014
Citation
SIAM Journal on Mathematical Analysis, 2014, v. 46, n. 6, p. 3865-3890 How to Cite?
Abstract© 2014 Society for Industrial and Applied Mathematics.We find a new class of data for which the Prandtl boundary layer equations and the hydrostatic Euler equations are locally in time well-posed. In the case of the Prandtl equations, if the initial datum u 0 is monotone on a number of intervals (on some strictly increasing, on some strictly decreasing) and analytic on the complement of these intervals, we show that the local existence and uniqueness hold. The same result is true for the hydrostatic Euler equations if we assume these conditions for the initial vorticity ω0 = ∂yu0.
Persistent Identifierhttp://hdl.handle.net/10722/228205
ISSN
2015 Impact Factor: 1.486
2015 SCImago Journal Rankings: 2.252

 

DC FieldValueLanguage
dc.contributor.authorKukavica, Igor-
dc.contributor.authorMasmoudi, Nader-
dc.contributor.authorVicol, Vlad-
dc.contributor.authorWong, Tak Kwong-
dc.date.accessioned2016-08-01T06:45:27Z-
dc.date.available2016-08-01T06:45:27Z-
dc.date.issued2014-
dc.identifier.citationSIAM Journal on Mathematical Analysis, 2014, v. 46, n. 6, p. 3865-3890-
dc.identifier.issn0036-1410-
dc.identifier.urihttp://hdl.handle.net/10722/228205-
dc.description.abstract© 2014 Society for Industrial and Applied Mathematics.We find a new class of data for which the Prandtl boundary layer equations and the hydrostatic Euler equations are locally in time well-posed. In the case of the Prandtl equations, if the initial datum u 0 is monotone on a number of intervals (on some strictly increasing, on some strictly decreasing) and analytic on the complement of these intervals, we show that the local existence and uniqueness hold. The same result is true for the hydrostatic Euler equations if we assume these conditions for the initial vorticity ω0 = ∂yu0.-
dc.languageeng-
dc.relation.ispartofSIAM Journal on Mathematical Analysis-
dc.subjectBoundary layer-
dc.titleOn the local well-posedness of the prandtl and hydrostatic euler equations with multiple monotonicity regions-
dc.typeArticle-
dc.description.natureLink_to_subscribed_fulltext-
dc.identifier.doi10.1137/140956440-
dc.identifier.scopuseid_2-s2.0-84919723225-
dc.identifier.volume46-
dc.identifier.issue6-
dc.identifier.spage3865-
dc.identifier.epage3890-
dc.identifier.eissn1095-7111-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats