File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On the H S Theory of Hydrostatic Euler Equations

TitleOn the H S Theory of Hydrostatic Euler Equations
Authors
Issue Date2012
Citation
Archive for Rational Mechanics and Analysis, 2012, v. 204, n. 1, p. 231-271 How to Cite?
AbstractIn this paper we study the two-dimensional hydrostatic Euler equations in a periodic channel. We prove the local existence and uniqueness of H S solutions under the local Rayleigh condition. This extends Brenier's (Nonlinearity 12(3):495-512, 1999) existence result by removing an artificial condition and proving uniqueness. In addition, we prove weak-strong uniqueness, mathematical justification of the formal derivation and stability of the hydrostatic Euler equations. These results are based on weighted H S a priori estimates, which come from a new type of nonlinear cancellation between velocity and vorticity. © 2012 Springer-Verlag.
Persistent Identifierhttp://hdl.handle.net/10722/228131
ISSN
2015 Impact Factor: 2.321
2015 SCImago Journal Rankings: 4.091

 

DC FieldValueLanguage
dc.contributor.authorMasmoudi, Nader-
dc.contributor.authorWong, Tak Kwong-
dc.date.accessioned2016-08-01T06:45:16Z-
dc.date.available2016-08-01T06:45:16Z-
dc.date.issued2012-
dc.identifier.citationArchive for Rational Mechanics and Analysis, 2012, v. 204, n. 1, p. 231-271-
dc.identifier.issn0003-9527-
dc.identifier.urihttp://hdl.handle.net/10722/228131-
dc.description.abstractIn this paper we study the two-dimensional hydrostatic Euler equations in a periodic channel. We prove the local existence and uniqueness of H S solutions under the local Rayleigh condition. This extends Brenier's (Nonlinearity 12(3):495-512, 1999) existence result by removing an artificial condition and proving uniqueness. In addition, we prove weak-strong uniqueness, mathematical justification of the formal derivation and stability of the hydrostatic Euler equations. These results are based on weighted H S a priori estimates, which come from a new type of nonlinear cancellation between velocity and vorticity. © 2012 Springer-Verlag.-
dc.languageeng-
dc.relation.ispartofArchive for Rational Mechanics and Analysis-
dc.titleOn the H S Theory of Hydrostatic Euler Equations-
dc.typeArticle-
dc.description.natureLink_to_subscribed_fulltext-
dc.identifier.doi10.1007/s00205-011-0485-0-
dc.identifier.scopuseid_2-s2.0-84858704855-
dc.identifier.volume204-
dc.identifier.issue1-
dc.identifier.spage231-
dc.identifier.epage271-
dc.identifier.eissn1432-0673-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats