File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Degree-scale cosmic microwave background polarization measurements from three years of bicep1 data

TitleDegree-scale cosmic microwave background polarization measurements from three years of bicep1 data
Authors
Keywordscosmic background radiation
Issue Date2014
Citation
Astrophysical Journal, 2014, v. 783, n. 2 How to Cite?
AbstractBICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the cosmic microwave background at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006-2008). This work extends the two-year result published in Chiang et al., with additional data from the third season and relaxed detector-selection criteria. This analysis also introduces a more comprehensive estimation of band power window functions, improved likelihood estimation methods, and a new technique for deprojecting monopole temperature-to-polarization leakage that reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at 21 ≤ ℓ ≤ 335 and find that the EE spectrum is consistent with Lambda cold dark matter cosmology, with the first acoustic peak of the EE spectrum now detected at 15σ. The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to , or r < 0.70 at 95% confidence level. © 2014. The American Astronomical Society. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/226709
ISSN
2015 Impact Factor: 5.909
2015 SCImago Journal Rankings: 3.266

 

DC FieldValueLanguage
dc.contributor.authorBarkats, D.-
dc.contributor.authorAikin, R.-
dc.contributor.authorBischoff, C.-
dc.contributor.authorBuder, I.-
dc.contributor.authorKaufman, J. P.-
dc.contributor.authorKeating, B. G.-
dc.contributor.authorKovac, J. M.-
dc.contributor.authorSu, M.-
dc.contributor.authorAde, P. A R-
dc.contributor.authorBattle, J. O.-
dc.contributor.authorBierman, E. M.-
dc.contributor.authorBock, J. J.-
dc.contributor.authorChiang, H. C.-
dc.contributor.authorDowell, C. D.-
dc.contributor.authorDuband, L.-
dc.contributor.authorFilippini, J.-
dc.contributor.authorHivon, E. F.-
dc.contributor.authorHolzapfel, W. L.-
dc.contributor.authorHristov, V. V.-
dc.contributor.authorJones, W. C.-
dc.contributor.authorKuo, C. L.-
dc.contributor.authorLeitch, E. M.-
dc.contributor.authorMason, P. V.-
dc.contributor.authorMatsumura, T.-
dc.contributor.authorNguyen, H. T.-
dc.contributor.authorPonthieu, N.-
dc.contributor.authorPryke, C.-
dc.contributor.authorRichter, S.-
dc.contributor.authorRocha, G.-
dc.contributor.authorSheehy, C.-
dc.contributor.authorKernasovskiy, S. S.-
dc.contributor.authorTakahashi, Y. D.-
dc.contributor.authorTolan, J. E.-
dc.contributor.authorYoon, K. W.-
dc.date.accessioned2016-06-29T01:58:21Z-
dc.date.available2016-06-29T01:58:21Z-
dc.date.issued2014-
dc.identifier.citationAstrophysical Journal, 2014, v. 783, n. 2-
dc.identifier.issn0004-637X-
dc.identifier.urihttp://hdl.handle.net/10722/226709-
dc.description.abstractBICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the cosmic microwave background at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006-2008). This work extends the two-year result published in Chiang et al., with additional data from the third season and relaxed detector-selection criteria. This analysis also introduces a more comprehensive estimation of band power window functions, improved likelihood estimation methods, and a new technique for deprojecting monopole temperature-to-polarization leakage that reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at 21 ≤ ℓ ≤ 335 and find that the EE spectrum is consistent with Lambda cold dark matter cosmology, with the first acoustic peak of the EE spectrum now detected at 15σ. The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to , or r < 0.70 at 95% confidence level. © 2014. The American Astronomical Society. All rights reserved.-
dc.languageeng-
dc.relation.ispartofAstrophysical Journal-
dc.subjectcosmic background radiation-
dc.titleDegree-scale cosmic microwave background polarization measurements from three years of bicep1 data-
dc.typeArticle-
dc.description.natureLink_to_subscribed_fulltext-
dc.identifier.doi10.1088/0004-637X/783/2/67-
dc.identifier.scopuseid_2-s2.0-84896743194-
dc.identifier.volume783-
dc.identifier.issue2-
dc.identifier.spagenull-
dc.identifier.epagenull-
dc.identifier.eissn1538-4357-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats