File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
  • Find via Find It@HKUL
Supplementary

Article: L_p-Polar Projection Brunn-Minkowski Inequality

TitleL_p-Polar Projection Brunn-Minkowski Inequality
L_p-極投影Brunn-Minkowski不等式
Authors
Keywordsq-dual mixed volumes q-對偶混合體積
L_p-polar projection bodies L_p-極投影體
L_p-mixed projection bodies L_p-混合投影體
Brunn-Minkowski inequality Brunn-Minkowski不等式
Issue Date2010
PublisherFudan University Press.
Citation
Chinese Annals of Mathematics, 2010, v. 31 n. 2, p. 239-246 How to Cite?
數學年刊A輯, 2010, v. 31 n. 2, p. 239-246 How to Cite?
AbstractIn this paper,the authors first generalize the notion of classical dual mixed volume to L_p-space and introduce the notion of q-dual mixed volume.Moreover,they extend the notion of classical L_p(p≥1)-projection bodies and introduce the notions of L_p(p將經典的對偶混合體積概念推廣到L_p空間,提出了'q-全對偶混合體積'的概念.將傳統的p≥1的L_p投影體概念拓展,提出p<1時的L_p投影體和混合投影體概念,并且建立了L_p-極投影Brunn-Minkowski不等式.作為應用,推廣了熟知的極投影Brunn-Minkowski不等式,獲得了投影Brunn-Minkowski不等式的L_p空間的極形式.
Persistent Identifierhttp://hdl.handle.net/10722/224744
ISSN

 

DC FieldValueLanguage
dc.contributor.authorZhao, C-
dc.contributor.authorCheung, WS-
dc.date.accessioned2016-04-14T02:24:02Z-
dc.date.available2016-04-14T02:24:02Z-
dc.date.issued2010-
dc.identifier.citationChinese Annals of Mathematics, 2010, v. 31 n. 2, p. 239-246-
dc.identifier.citation數學年刊A輯, 2010, v. 31 n. 2, p. 239-246-
dc.identifier.issn1000-8314-
dc.identifier.urihttp://hdl.handle.net/10722/224744-
dc.description.abstractIn this paper,the authors first generalize the notion of classical dual mixed volume to L_p-space and introduce the notion of q-dual mixed volume.Moreover,they extend the notion of classical L_p(p≥1)-projection bodies and introduce the notions of L_p(p<l)-projection and mixed projection bodies,and establish the Brunn-Minkowski inequality for L_p-polar mixed projection bodies.As applications,the well-known Brunn-Minkowski inequality for polar of projection bodies is generalized and an L_p-polar form of Brunn-Minkowski inequality for projection bodies is obtained.-
dc.description.abstract將經典的對偶混合體積概念推廣到L_p空間,提出了'q-全對偶混合體積'的概念.將傳統的p≥1的L_p投影體概念拓展,提出p<1時的L_p投影體和混合投影體概念,并且建立了L_p-極投影Brunn-Minkowski不等式.作為應用,推廣了熟知的極投影Brunn-Minkowski不等式,獲得了投影Brunn-Minkowski不等式的L_p空間的極形式.-
dc.languageeng-
dc.languagechi-
dc.publisherFudan University Press.-
dc.relation.ispartofChinese Annals of Mathematics-
dc.relation.ispartof數學年刊A輯-
dc.subjectq-dual mixed volumes q-對偶混合體積-
dc.subjectL_p-polar projection bodies L_p-極投影體-
dc.subjectL_p-mixed projection bodies L_p-混合投影體-
dc.subjectBrunn-Minkowski inequality Brunn-Minkowski不等式-
dc.titleL_p-Polar Projection Brunn-Minkowski Inequality-
dc.titleL_p-極投影Brunn-Minkowski不等式-
dc.typeArticle-
dc.identifier.emailCheung, WS: wscheung@hku.hk-
dc.identifier.authorityCheung, WS=rp00678-
dc.identifier.hkuros170417-
dc.identifier.volume31-
dc.identifier.issue2-
dc.identifier.spage239-
dc.identifier.epage246-
dc.publisher.placeChina-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats