File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Visual Recognition

TitleHD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Visual Recognition
Authors
Issue Date2015
PublisherComputer Vision Foundation / IEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000149
Citation
International Conference on Computer Vision (ICCV) Proceedings, CentroParque Convention Center, Santiago, Chile, 13-16 December 2015, p. 2740-2748 How to Cite?
DescriptionPoster Session 3B - Statistical Methods and Learning, Motion and Tracking, and Video Analysis I
Persistent Identifierhttp://hdl.handle.net/10722/222584
ISSN

 

DC FieldValueLanguage
dc.contributor.authorYan, Z-
dc.contributor.authorZhang, H-
dc.contributor.authorPiramuthu, R-
dc.contributor.authorJagadeesh, V-
dc.contributor.authorDeCoste, D-
dc.contributor.authorDi, W-
dc.contributor.authorYu, Y-
dc.date.accessioned2016-01-18T07:43:20Z-
dc.date.available2016-01-18T07:43:20Z-
dc.date.issued2015-
dc.identifier.citationInternational Conference on Computer Vision (ICCV) Proceedings, CentroParque Convention Center, Santiago, Chile, 13-16 December 2015, p. 2740-2748-
dc.identifier.issn1550-5499-
dc.identifier.urihttp://hdl.handle.net/10722/222584-
dc.descriptionPoster Session 3B - Statistical Methods and Learning, Motion and Tracking, and Video Analysis I-
dc.languageeng-
dc.publisherComputer Vision Foundation / IEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000149-
dc.relation.ispartofIEEE International Conference on Computer Vision Proceedings-
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.titleHD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Visual Recognition-
dc.typeConference_Paper-
dc.identifier.emailYu, Y: yzyu@cs.hku.hk-
dc.identifier.authorityYu, Y=rp01415-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1109/ICCV.2015.314-
dc.identifier.hkuros256670-
dc.identifier.spage2740-
dc.identifier.epage2748-
dc.publisher.placeUnited States-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats