File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A central limit theorem in the -model for undirected random graphs with a diverging number of vertices

TitleA central limit theorem in the -model for undirected random graphs with a diverging number of vertices
Authors
KeywordsModel
Central Limit Theorem
Fisher Information Matrix
Issue Date2013
PublisherOxford University Press. The Journal's web site is located at http://biomet.oxfordjournals.org/
Citation
Biometrika, 2013, v. 100, p. 519-524 How to Cite?
AbstractChatterjee et al. (2011) established the consistency of the maximum likelihood estimator in the β -model for undirected random graphs when the number of vertices goes to infinity. By approximating the inverse of the Fisher information matrix, we prove asymptotic normality of the maximum likelihood estimator under mild conditions. Simulation studies and a data example illustrate the theoretical results.
Persistent Identifierhttp://hdl.handle.net/10722/221669
ISSN
2015 Impact Factor: 1.13
2015 SCImago Journal Rankings: 2.801
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorYan, T-
dc.contributor.authorXu, J-
dc.date.accessioned2015-12-04T15:28:59Z-
dc.date.available2015-12-04T15:28:59Z-
dc.date.issued2013-
dc.identifier.citationBiometrika, 2013, v. 100, p. 519-524-
dc.identifier.issn0006-3444-
dc.identifier.urihttp://hdl.handle.net/10722/221669-
dc.description.abstractChatterjee et al. (2011) established the consistency of the maximum likelihood estimator in the β -model for undirected random graphs when the number of vertices goes to infinity. By approximating the inverse of the Fisher information matrix, we prove asymptotic normality of the maximum likelihood estimator under mild conditions. Simulation studies and a data example illustrate the theoretical results.-
dc.languageeng-
dc.publisherOxford University Press. The Journal's web site is located at http://biomet.oxfordjournals.org/-
dc.relation.ispartofBiometrika-
dc.subjectModel-
dc.subjectCentral Limit Theorem-
dc.subjectFisher Information Matrix-
dc.titleA central limit theorem in the -model for undirected random graphs with a diverging number of vertices-
dc.typeArticle-
dc.identifier.emailXu, J: xujf@hku.hk-
dc.identifier.authorityXu, J=rp02086-
dc.identifier.doi10.1093/biomet/ass084-
dc.identifier.scopuseid_2-s2.0-84878070383-
dc.identifier.hkuros260472-
dc.identifier.volume100-
dc.identifier.spage519-
dc.identifier.epage524-
dc.identifier.isiWOS:000319428000018-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats