File Download

There are no files associated with this item.

Supplementary

Conference Paper: Slope-based sequencing yardstick for analyzing unsatisfactory performance of multithreaded programs: an SSYAU trend estimation approach to performance bug localization

TitleSlope-based sequencing yardstick for analyzing unsatisfactory performance of multithreaded programs: an SSYAU trend estimation approach to performance bug localization
Authors
Issue Date2015
PublisherIEEE Computer Society.
Citation
The 39th IEEE International Computers, Software and Applications Conference (COMPSAC 2015), Taichung, Taiwan, 1-5 July 2015. In Conference Proceedings, 2015, p. 11–16 How to Cite?
DescriptionConference theme: Mobile and Cloud Systems - Challenges and Applications
Persistent Identifierhttp://hdl.handle.net/10722/220636

 

DC FieldValueLanguage
dc.contributor.authorChan, WK-
dc.contributor.authorTse, TH-
dc.contributor.authorWu, S-
dc.contributor.authorYu, YT-
dc.contributor.authorZhang, Z-
dc.date.accessioned2015-10-16T06:47:53Z-
dc.date.available2015-10-16T06:47:53Z-
dc.date.issued2015-
dc.identifier.citationThe 39th IEEE International Computers, Software and Applications Conference (COMPSAC 2015), Taichung, Taiwan, 1-5 July 2015. In Conference Proceedings, 2015, p. 11–16-
dc.identifier.urihttp://hdl.handle.net/10722/220636-
dc.descriptionConference theme: Mobile and Cloud Systems - Challenges and Applications-
dc.languageeng-
dc.publisherIEEE Computer Society.-
dc.relation.ispartofIEEE International Computers, Software and Applications Conference, COMPSAC 2015-
dc.titleSlope-based sequencing yardstick for analyzing unsatisfactory performance of multithreaded programs: an SSYAU trend estimation approach to performance bug localization-
dc.typeConference_Paper-
dc.identifier.emailTse, TH: thtse@cs.hku.hk-
dc.identifier.authorityTse, TH=rp00546-
dc.identifier.hkuros255817-
dc.identifier.spage11-
dc.identifier.epage16-
dc.publisher.placeUnited States-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats