File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Rapid assessment of the coenzyme Q10 redox state using ultrahigh performance liquid chromatography tandem mass spectrometry

TitleRapid assessment of the coenzyme Q10 redox state using ultrahigh performance liquid chromatography tandem mass spectrometry
Authors
Issue Date2014
PublisherRoyal Society of Chemistry. The Journal's web site is located at http://www.rsc.org/analyst
Citation
The Analyst, 2014, v. 139 n. 21, p. 5600-5604 How to Cite?
AbstractAn improved method for accurate and rapid assessment of the coenzyme Q10 (CoQ10) redox state using ultrahigh performance liquid chromatography tandem mass spectrometry was described, with particular attention given to the instability of the reduced form of CoQ10 during sample preparation, chromatographic separation and mass spectrometric detection. As highly lipophilic compounds in complex biological matrices, both reduced and oxidized forms of CoQ10 were extracted simultaneously from the tissue samples by methanol which is superior to ethanol and isopropanol. After centrifugation, the supernatants were immediately separated on a C18 column with isocratic elution using methanol containing 2 mM ammonium acetate as a non-aqueous mobile phase, and detected by positive electrospray ionization tandem mass spectrometry in multiple reaction monitoring (MRM) mode. Ammonium acetate as an additive in methanol provided enhanced mass spectrometric responses for both forms of CoQ10, primarily due to stable formation of adduct ions [M + NH4](+), which served as precursor ions in positive ionization MRM transitions. The assay showed a linear range of 8.6-8585 ng mL(-1) for CoQ10H2 and 8.6-4292 ng mL(-1) for CoQ10. The limits of detection (LODs) were 7.0 and 1.0 ng mL(-1) and limits of quantification (LOQs) were 15.0 and 5.0 ng mL(-1) for CoQ10H2 and CoQ10, respectively. This rapid extractive and analytical method could avoid artificial auto-oxidation of the reduced form of CoQ10, enabling the native redox state assessment. This reliable method was also successfully applied for the measurement of the CoQ10 redox state in liver tissues of mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin, revealing the down-regulated mitochondrial electron transport chain.
Persistent Identifierhttp://hdl.handle.net/10722/210709
ISSN
2015 Impact Factor: 4.033
2015 SCImago Journal Rankings: 1.300
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorTang, Z-
dc.contributor.authorLi, S-
dc.contributor.authorGuan, X-
dc.contributor.authorSchmitt-Kopplin, P-
dc.contributor.authorLin, S-
dc.contributor.authorCai, Z-
dc.date.accessioned2015-06-23T05:48:01Z-
dc.date.available2015-06-23T05:48:01Z-
dc.date.issued2014-
dc.identifier.citationThe Analyst, 2014, v. 139 n. 21, p. 5600-5604-
dc.identifier.issn0003-2654-
dc.identifier.urihttp://hdl.handle.net/10722/210709-
dc.description.abstractAn improved method for accurate and rapid assessment of the coenzyme Q10 (CoQ10) redox state using ultrahigh performance liquid chromatography tandem mass spectrometry was described, with particular attention given to the instability of the reduced form of CoQ10 during sample preparation, chromatographic separation and mass spectrometric detection. As highly lipophilic compounds in complex biological matrices, both reduced and oxidized forms of CoQ10 were extracted simultaneously from the tissue samples by methanol which is superior to ethanol and isopropanol. After centrifugation, the supernatants were immediately separated on a C18 column with isocratic elution using methanol containing 2 mM ammonium acetate as a non-aqueous mobile phase, and detected by positive electrospray ionization tandem mass spectrometry in multiple reaction monitoring (MRM) mode. Ammonium acetate as an additive in methanol provided enhanced mass spectrometric responses for both forms of CoQ10, primarily due to stable formation of adduct ions [M + NH4](+), which served as precursor ions in positive ionization MRM transitions. The assay showed a linear range of 8.6-8585 ng mL(-1) for CoQ10H2 and 8.6-4292 ng mL(-1) for CoQ10. The limits of detection (LODs) were 7.0 and 1.0 ng mL(-1) and limits of quantification (LOQs) were 15.0 and 5.0 ng mL(-1) for CoQ10H2 and CoQ10, respectively. This rapid extractive and analytical method could avoid artificial auto-oxidation of the reduced form of CoQ10, enabling the native redox state assessment. This reliable method was also successfully applied for the measurement of the CoQ10 redox state in liver tissues of mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin, revealing the down-regulated mitochondrial electron transport chain.-
dc.languageeng-
dc.publisherRoyal Society of Chemistry. The Journal's web site is located at http://www.rsc.org/analyst-
dc.relation.ispartofThe Analyst-
dc.titleRapid assessment of the coenzyme Q10 redox state using ultrahigh performance liquid chromatography tandem mass spectrometry-
dc.typeArticle-
dc.identifier.emailGuan, X: xyguan@hkucc.hku.hk-
dc.identifier.authorityGuan, X=rp00454-
dc.identifier.doi10.1039/c4an00760c-
dc.identifier.pmid25140668-
dc.identifier.scopuseid_2-s2.0-84908325876-
dc.identifier.hkuros243533-
dc.identifier.volume139-
dc.identifier.issue21-
dc.identifier.spage5600-
dc.identifier.epage5604-
dc.identifier.isiWOS:000343003700039-
dc.publisher.placeUnited Kingdom-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats