File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Population Pulsation Resonances of Excitons in Monolayer MoSe2 with Sub-1  μeV Linewidths

TitlePopulation Pulsation Resonances of Excitons in Monolayer MoSe2 with Sub-1  μeV Linewidths
Authors
Issue Date2015
PublisherAmerican Physical Society. The Journal's web site is located at http://prl.aps.org
Citation
Physical Review Letters, 2015, v. 114, p. 137402:1-6 How to Cite?
Abstract© 2015 American Physical Society. Monolayer transition metal dichalcogenides, a new class of atomically thin semiconductors, possess optically coupled 2D valley excitons. The nature of exciton relaxation in these systems is currently poorly understood. Here, we investigate exciton relaxation in monolayer MoSe2 using polarization-resolved coherent nonlinear optical spectroscopy with high spectral resolution. We report strikingly narrow population pulsation resonances with two different characteristic linewidths of 1 and <0.2μeV at low temperature. These linewidths are more than 3 orders of magnitude narrower than the photoluminescence and absorption linewidth, and indicate that a component of the exciton relaxation dynamics occurs on time scales longer than 1 ns. The ultranarrow resonance (<0.2μeV) emerges with increasing excitation intensity, and implies the existence of a long-lived state whose lifetime exceeds 6 ns.
Persistent Identifierhttp://hdl.handle.net/10722/209817
ISSN
2015 Impact Factor: 7.645
2015 SCImago Journal Rankings: 3.731

 

DC FieldValueLanguage
dc.contributor.authorSchaibley, JRen_US
dc.contributor.authorKarin, Ten_US
dc.contributor.authorYu, Hen_US
dc.contributor.authorRoss, JSen_US
dc.contributor.authorRivera, Pen_US
dc.contributor.authorJones, AMen_US
dc.contributor.authorScott, MEen_US
dc.contributor.authorYan, Jen_US
dc.contributor.authorMandrus, DGen_US
dc.contributor.authorYao, Wen_US
dc.contributor.authorFu, KMen_US
dc.contributor.authorXu, Xen_US
dc.date.accessioned2015-05-18T03:25:36Z-
dc.date.available2015-05-18T03:25:36Z-
dc.date.issued2015en_US
dc.identifier.citationPhysical Review Letters, 2015, v. 114, p. 137402:1-6en_US
dc.identifier.issn0031-9007-
dc.identifier.urihttp://hdl.handle.net/10722/209817-
dc.description.abstract© 2015 American Physical Society. Monolayer transition metal dichalcogenides, a new class of atomically thin semiconductors, possess optically coupled 2D valley excitons. The nature of exciton relaxation in these systems is currently poorly understood. Here, we investigate exciton relaxation in monolayer MoSe2 using polarization-resolved coherent nonlinear optical spectroscopy with high spectral resolution. We report strikingly narrow population pulsation resonances with two different characteristic linewidths of 1 and <0.2μeV at low temperature. These linewidths are more than 3 orders of magnitude narrower than the photoluminescence and absorption linewidth, and indicate that a component of the exciton relaxation dynamics occurs on time scales longer than 1 ns. The ultranarrow resonance (<0.2μeV) emerges with increasing excitation intensity, and implies the existence of a long-lived state whose lifetime exceeds 6 ns.-
dc.languageengen_US
dc.publisherAmerican Physical Society. The Journal's web site is located at http://prl.aps.orgen_US
dc.relation.ispartofPhysical Review Lettersen_US
dc.rightsPhysical Review Letters. Copyright © American Physical Society. Creative Commons: Attribution 3.0 Hong Kong Licenseen_US
dc.titlePopulation Pulsation Resonances of Excitons in Monolayer MoSe2 with Sub-1  μeV Linewidthsen_US
dc.typeArticleen_US
dc.identifier.emailYu, H: yuhongyi@hku.hken_US
dc.identifier.emailYao, W: wangyao@hku.hken_US
dc.identifier.authorityYao, W=rp00827en_US
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1103/PhysRevLett.114.137402en_US
dc.identifier.scopuseid_2-s2.0-84929603260-
dc.identifier.hkuros243107en_US
dc.identifier.volume114en_US
dc.identifier.spage137402:1en_US
dc.identifier.epage6en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats