File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Simulation of single-particle inductively coupled plasma-mass spectrometry

TitleSimulation of single-particle inductively coupled plasma-mass spectrometry
Authors
Advisors
Advisor(s):Chan, WT
Issue Date2013
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Lee, K. [李健豪]. (2013). Simulation of single-particle inductively coupled plasma-mass spectrometry. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5177356
AbstractTime-resolved Inductively Coupled Plasma –Mass Spectrometry (ICP-MS) is a versatile tool for the analysis of single particles such as air particles, nanoparticles, and biological cells. In this study, the processes of particle vaporization and analyte atom diffusion and ionization in the ICP were investigated using computer simulation. Gold nanoparticles of particle diameter 10 to 250 nm were used as the model particle. The parameters of the model were optimized with respect to the experimental data. The relative importance of these parameters was investigated. Simulated ICP-MS intensity versus sampling depth for different particle size was calculated. Two models of particle vaporization, namely heat-transfer-limited and mass-transfer-limited, were adopted to describe the kinetics of vaporization of the gold nanoparticles. The rate of particle vaporization of the limiting model in each 5-µs time step was used in the simulation. The heat-transfer-limited process dominates at lower position of the ICP. The mass-transfer-limited process takes over at sampling depth of 4mm or above where the ICP temperature is higher than 4000K. The simulation assumed that the gold atoms vaporized from the particle in each time step diffuse independently. The number density of the gold atoms was calculated using the Chapman-Enskog diffusion theory for each subsequent time step. The degree of ionization of the gold atoms was estimated using Saha equation and was assumed to be dependent on the plasma temperature only. The simulated ICP-MS intensity at any instant was the sum of the gold ions in the ion plumes from all previous time steps that pass through a 1-mm sampler cone. The effects of several simulation parameters on the calculated ICP-MS intensity were investigated. The simulation depth profile of ICP-MS intensity of 100-nm gold nanoparticle was compared to the experimental ICP-MS depth profile. The ICP-MS intensity depends strongly on the ionization temperature of the plasma and the evaporation coefficient of the analyte. The ICP temperature profile, gas velocity, ionization temperature and evaporation coefficient were optimized for the best fit of simulated results to the experimental data. Simulated calibration curves of gold nanoparticles of nominal diameter of 10 nm to 250 nm are non-linear at any sampling depth. The calibration curve rolls off at high mass due to incomplete vaporization of the larger particles in the ICP. The calibration curve at high sampling depth concaves upward in the low mass range because of significant diffusion loss of the analyte atoms for the small particles.
DegreeMaster of Philosophy
SubjectParticles - Analysis
Inductively coupled plasma mass spectrometry
Dept/ProgramChemistry
Persistent Identifierhttp://hdl.handle.net/10722/196478

 

DC FieldValueLanguage
dc.contributor.advisorChan, WT-
dc.contributor.authorLee, Kin-ho-
dc.contributor.author李健豪-
dc.date.accessioned2014-04-11T23:14:29Z-
dc.date.available2014-04-11T23:14:29Z-
dc.date.issued2013-
dc.identifier.citationLee, K. [李健豪]. (2013). Simulation of single-particle inductively coupled plasma-mass spectrometry. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5177356-
dc.identifier.urihttp://hdl.handle.net/10722/196478-
dc.description.abstractTime-resolved Inductively Coupled Plasma –Mass Spectrometry (ICP-MS) is a versatile tool for the analysis of single particles such as air particles, nanoparticles, and biological cells. In this study, the processes of particle vaporization and analyte atom diffusion and ionization in the ICP were investigated using computer simulation. Gold nanoparticles of particle diameter 10 to 250 nm were used as the model particle. The parameters of the model were optimized with respect to the experimental data. The relative importance of these parameters was investigated. Simulated ICP-MS intensity versus sampling depth for different particle size was calculated. Two models of particle vaporization, namely heat-transfer-limited and mass-transfer-limited, were adopted to describe the kinetics of vaporization of the gold nanoparticles. The rate of particle vaporization of the limiting model in each 5-µs time step was used in the simulation. The heat-transfer-limited process dominates at lower position of the ICP. The mass-transfer-limited process takes over at sampling depth of 4mm or above where the ICP temperature is higher than 4000K. The simulation assumed that the gold atoms vaporized from the particle in each time step diffuse independently. The number density of the gold atoms was calculated using the Chapman-Enskog diffusion theory for each subsequent time step. The degree of ionization of the gold atoms was estimated using Saha equation and was assumed to be dependent on the plasma temperature only. The simulated ICP-MS intensity at any instant was the sum of the gold ions in the ion plumes from all previous time steps that pass through a 1-mm sampler cone. The effects of several simulation parameters on the calculated ICP-MS intensity were investigated. The simulation depth profile of ICP-MS intensity of 100-nm gold nanoparticle was compared to the experimental ICP-MS depth profile. The ICP-MS intensity depends strongly on the ionization temperature of the plasma and the evaporation coefficient of the analyte. The ICP temperature profile, gas velocity, ionization temperature and evaporation coefficient were optimized for the best fit of simulated results to the experimental data. Simulated calibration curves of gold nanoparticles of nominal diameter of 10 nm to 250 nm are non-linear at any sampling depth. The calibration curve rolls off at high mass due to incomplete vaporization of the larger particles in the ICP. The calibration curve at high sampling depth concaves upward in the low mass range because of significant diffusion loss of the analyte atoms for the small particles.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.subject.lcshParticles - Analysis-
dc.subject.lcshInductively coupled plasma mass spectrometry-
dc.titleSimulation of single-particle inductively coupled plasma-mass spectrometry-
dc.typePG_Thesis-
dc.identifier.hkulb5177356-
dc.description.thesisnameMaster of Philosophy-
dc.description.thesislevelMaster-
dc.description.thesisdisciplineChemistry-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b5177356-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats