File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Statistical inference for some econometric time series models

TitleStatistical inference for some econometric time series models
Authors
Advisors
Advisor(s):Li, G
Issue Date2014
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Li, Y. [李杨]. (2014). Statistical inference for some econometric time series models. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5153693
AbstractWith the increasingly economic activities, people have more and more interest in econometric models. There are two mainstream econometric models which are very popular in recent decades. One is quantile autoregressive (QAR) model which allows varying-coefficients in linear time series and greatly promotes the ranges of regression research. The first topic of this thesis is to focus on the modeling of QAR model. We propose two important measures, quantile correlation (QCOR) and quantile partial correlation (QPCOR). We then apply them to QAR models, and introduce two valuable quantities, the quantile autocorrelation function (QACF) and the quantile partial autocorrelation function (QPACF). This allows us to extend the Box-Jenkins three-stage procedure (model identification, model parameter estimation, and model diagnostic checking) from classical autoregressive models to quantile autoregressive models. Specifically, the QPACF of an observed time series can be employed to identify the autoregressive order, while the QACF of residuals obtained from the model can be used to assess the model adequacy. We not only demonstrate the asymptotic properties of QCOR, QPCOR, QACF and PQACF, but also show the large sample results of the QAR estimates and the quantile version of the Ljung- Box test. Moreover, we obtain the bootstrap approximations to the distributions of parameter estimators and proposed measures. Simulation studies indicate that the proposed methods perform well in finite samples, and an empirical example is presented to illustrate the usefulness of QAR model. The other important econometric model is autoregressive conditional duration (ACD) model which is developed with the purpose of depicting ultra high frequency (UHF) financial time series data. The second topic of this thesis is designed to incorporate ACD model with one of the extreme value distributions, i.e. Fréchet distribution. We apply the maximum likelihood estimation (MLE) to Fréchet ACD models and derive its generalized residuals for model adequacy checking. It is noteworthy that simulations show a relative greater sensitiveness in the linear parameters to sampling errors. This phenomenon successfully reflects the skewness of the Fréchet distribution and suggests a method to practitioners in proceeding model accuracy. Furthermore, we present the empirical sizes and powers for Box-Pierce, Ljung-Box and modified Box-Pierce statistics as comparisons of the proposed portmanteau statistic. In addition to the Fréchet ACD, we also systematically analyze theWeibull ACD, where the Weibull distribution is the other nonnegative extreme value distribution. The last topic of the thesis explains the estimation and diagnostic checking the Weibull ACD model. By investigating the MLE in this model, there exhibits a slight sensitiveness in linear parameters. However, there is an obvious phenomenon on the trade-off between the skewness of Weibull distribution and the sampling error when the simulations are conducted. Moreover, the asymptotic properties are also studied for the generalized residuals and a goodness-of-fit test is employed to obtain a portmanteau statistic. Through the simulation results in size and power, it shows that Weibull ACD is superior to Fréchet ACD in specifying the wrong model. This is meaningful in practice.
DegreeDoctor of Philosophy
SubjectEconometrics
Time-series analysis
Dept/ProgramStatistics and Actuarial Science
Persistent Identifierhttp://hdl.handle.net/10722/195984

 

DC FieldValueLanguage
dc.contributor.advisorLi, G-
dc.contributor.authorLi, Yang-
dc.contributor.author李杨-
dc.date.accessioned2014-03-21T03:50:03Z-
dc.date.available2014-03-21T03:50:03Z-
dc.date.issued2014-
dc.identifier.citationLi, Y. [李杨]. (2014). Statistical inference for some econometric time series models. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5153693-
dc.identifier.urihttp://hdl.handle.net/10722/195984-
dc.description.abstractWith the increasingly economic activities, people have more and more interest in econometric models. There are two mainstream econometric models which are very popular in recent decades. One is quantile autoregressive (QAR) model which allows varying-coefficients in linear time series and greatly promotes the ranges of regression research. The first topic of this thesis is to focus on the modeling of QAR model. We propose two important measures, quantile correlation (QCOR) and quantile partial correlation (QPCOR). We then apply them to QAR models, and introduce two valuable quantities, the quantile autocorrelation function (QACF) and the quantile partial autocorrelation function (QPACF). This allows us to extend the Box-Jenkins three-stage procedure (model identification, model parameter estimation, and model diagnostic checking) from classical autoregressive models to quantile autoregressive models. Specifically, the QPACF of an observed time series can be employed to identify the autoregressive order, while the QACF of residuals obtained from the model can be used to assess the model adequacy. We not only demonstrate the asymptotic properties of QCOR, QPCOR, QACF and PQACF, but also show the large sample results of the QAR estimates and the quantile version of the Ljung- Box test. Moreover, we obtain the bootstrap approximations to the distributions of parameter estimators and proposed measures. Simulation studies indicate that the proposed methods perform well in finite samples, and an empirical example is presented to illustrate the usefulness of QAR model. The other important econometric model is autoregressive conditional duration (ACD) model which is developed with the purpose of depicting ultra high frequency (UHF) financial time series data. The second topic of this thesis is designed to incorporate ACD model with one of the extreme value distributions, i.e. Fréchet distribution. We apply the maximum likelihood estimation (MLE) to Fréchet ACD models and derive its generalized residuals for model adequacy checking. It is noteworthy that simulations show a relative greater sensitiveness in the linear parameters to sampling errors. This phenomenon successfully reflects the skewness of the Fréchet distribution and suggests a method to practitioners in proceeding model accuracy. Furthermore, we present the empirical sizes and powers for Box-Pierce, Ljung-Box and modified Box-Pierce statistics as comparisons of the proposed portmanteau statistic. In addition to the Fréchet ACD, we also systematically analyze theWeibull ACD, where the Weibull distribution is the other nonnegative extreme value distribution. The last topic of the thesis explains the estimation and diagnostic checking the Weibull ACD model. By investigating the MLE in this model, there exhibits a slight sensitiveness in linear parameters. However, there is an obvious phenomenon on the trade-off between the skewness of Weibull distribution and the sampling error when the simulations are conducted. Moreover, the asymptotic properties are also studied for the generalized residuals and a goodness-of-fit test is employed to obtain a portmanteau statistic. Through the simulation results in size and power, it shows that Weibull ACD is superior to Fréchet ACD in specifying the wrong model. This is meaningful in practice.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.subject.lcshEconometrics-
dc.subject.lcshTime-series analysis-
dc.titleStatistical inference for some econometric time series models-
dc.typePG_Thesis-
dc.identifier.hkulb5153693-
dc.description.thesisnameDoctor of Philosophy-
dc.description.thesislevelDoctoral-
dc.description.thesisdisciplineStatistics and Actuarial Science-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b5153693-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats