File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Error analysis for the truncation of multipole expansion of vector Green's functions

TitleError analysis for the truncation of multipole expansion of vector Green's functions
Authors
KeywordsError Analysis
Fast Multipole Algorithms (Fma)
Vector Green's Functions
Issue Date2001
Citation
Ieee Microwave And Wireless Components Letters, 2001, v. 11 n. 7, p. 311-313 How to Cite?
AbstractOne of the most important mathematical formulas in fast multipole algorithms (FMA) is the addition theorem. In the numerical implementation of the addition theorem, the infinite series should be truncated. In this paper, the number of terms needed for the scalar Green's function is derived, and the error analysis for the truncation error in the multipole expansion of the vector Green's functions is given. We have found that the error term in vector Green's functions is proportional to 1/R. If the scalar Green's function is truncated at the L-th term and the relative error is ε, then the relative error in the dyadic Green's function is ε/4, if it is truncated at the (L + 2)-th term. For the vector Green's function related to MFIE, the relative error is ε/2 if it is truncated at the (L + 1)-th term.
Persistent Identifierhttp://hdl.handle.net/10722/182656
ISSN
2015 Impact Factor: 1.599
2015 SCImago Journal Rankings: 0.942
References

 

DC FieldValueLanguage
dc.contributor.authorSong, Jen_US
dc.contributor.authorChew, WCen_US
dc.date.accessioned2013-05-02T05:16:18Z-
dc.date.available2013-05-02T05:16:18Z-
dc.date.issued2001en_US
dc.identifier.citationIeee Microwave And Wireless Components Letters, 2001, v. 11 n. 7, p. 311-313en_US
dc.identifier.issn1531-1309en_US
dc.identifier.urihttp://hdl.handle.net/10722/182656-
dc.description.abstractOne of the most important mathematical formulas in fast multipole algorithms (FMA) is the addition theorem. In the numerical implementation of the addition theorem, the infinite series should be truncated. In this paper, the number of terms needed for the scalar Green's function is derived, and the error analysis for the truncation error in the multipole expansion of the vector Green's functions is given. We have found that the error term in vector Green's functions is proportional to 1/R. If the scalar Green's function is truncated at the L-th term and the relative error is ε, then the relative error in the dyadic Green's function is ε/4, if it is truncated at the (L + 2)-th term. For the vector Green's function related to MFIE, the relative error is ε/2 if it is truncated at the (L + 1)-th term.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Microwave and Wireless Components Lettersen_US
dc.subjectError Analysisen_US
dc.subjectFast Multipole Algorithms (Fma)en_US
dc.subjectVector Green's Functionsen_US
dc.titleError analysis for the truncation of multipole expansion of vector Green's functionsen_US
dc.typeArticleen_US
dc.identifier.emailChew, WC: wcchew@hku.hken_US
dc.identifier.authorityChew, WC=rp00656en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1109/7260.933781en_US
dc.identifier.scopuseid_2-s2.0-0035401652en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0035401652&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume11en_US
dc.identifier.issue7en_US
dc.identifier.spage311en_US
dc.identifier.epage313en_US
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridSong, J=7404788341en_US
dc.identifier.scopusauthoridChew, WC=36014436300en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats