File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A general approach to extend berenger's absorbing boundary condition to anisotropie and dispersive media

TitleA general approach to extend berenger's absorbing boundary condition to anisotropie and dispersive media
Authors
KeywordsAbsorbing Media
Anisotropic Media
Dispersive Media
Issue Date1998
Citation
Ieee Transactions On Antennas And Propagation, 1998, v. 46 n. 9, p. 1386-1387 How to Cite?
AbstractRecent studies have focused on the extension of the Berenger's absorbing boundary condition (ABC)-the perfectly matched layer (PML)-to anisotropic and dispersive media. In this letter, we describe how the PML can be extended for anisotropic and/or dispersive media (or even bianisotropic media) with little analytical effort, in a simple and general conceptual setting, by using an analytical continuation of the coordinate space of the Maxwell's equations to a complex variables domain. Using this approach, there is no conceptual distinction between the derivation of PML for more complex media and the derivation for isotropic, dispersionless media. © 1998 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/182598
ISSN
2015 Impact Factor: 2.053
2015 SCImago Journal Rankings: 2.130
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorTeixeira, FLen_US
dc.contributor.authorChew, WCen_US
dc.date.accessioned2013-05-02T05:16:02Z-
dc.date.available2013-05-02T05:16:02Z-
dc.date.issued1998en_US
dc.identifier.citationIeee Transactions On Antennas And Propagation, 1998, v. 46 n. 9, p. 1386-1387en_US
dc.identifier.issn0018-926Xen_US
dc.identifier.urihttp://hdl.handle.net/10722/182598-
dc.description.abstractRecent studies have focused on the extension of the Berenger's absorbing boundary condition (ABC)-the perfectly matched layer (PML)-to anisotropic and dispersive media. In this letter, we describe how the PML can be extended for anisotropic and/or dispersive media (or even bianisotropic media) with little analytical effort, in a simple and general conceptual setting, by using an analytical continuation of the coordinate space of the Maxwell's equations to a complex variables domain. Using this approach, there is no conceptual distinction between the derivation of PML for more complex media and the derivation for isotropic, dispersionless media. © 1998 IEEE.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Antennas and Propagationen_US
dc.subjectAbsorbing Mediaen_US
dc.subjectAnisotropic Mediaen_US
dc.subjectDispersive Mediaen_US
dc.titleA general approach to extend berenger's absorbing boundary condition to anisotropie and dispersive mediaen_US
dc.typeArticleen_US
dc.identifier.emailChew, WC: wcchew@hku.hken_US
dc.identifier.authorityChew, WC=rp00656en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1109/8.719984en_US
dc.identifier.scopuseid_2-s2.0-0032162915en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0032162915&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume46en_US
dc.identifier.issue9en_US
dc.identifier.spage1386en_US
dc.identifier.epage1387en_US
dc.identifier.isiWOS:000076095700019-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridTeixeira, FL=7102746700en_US
dc.identifier.scopusauthoridChew, WC=36014436300en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats