File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Crossover of the three-dimensional topological insulator Bi2 Se3 to the two-dimensional limit

TitleCrossover of the three-dimensional topological insulator Bi2 Se3 to the two-dimensional limit
Authors
Issue Date2010
PublisherNature Publishing Group. The Journal's web site is located at http://npg.nature.com/npg/servlet/Form?_action=submit
Citation
Nature Physics, 2010, v. 6 n. 8, p. 584-588 How to Cite?
AbstractA topological insulator1-9 is a new state of quantum matter that is characterized by a finite energy gap in the bulk and gapless modes flowing along the boundaries that are robust against disorder scattering. The topological protection of the surface state could be useful for both low-power electronics10 and error-tolerant quantum computing11,12. For a thin slab of three-dimensional topological insulator, the boundary modes from the opposite surfaces may be coupled by quantum tunnelling, so that a small, thickness-dependent gap is opened up13,15. Here we report such results from angle-resolved photoemission spectroscopy on Bi2 Se3 films of various thicknesses grown by molecular beam epitaxy. The energy gap opening is clearly seen when the thickness is below six quintuple layers. The gapped surface states also exhibit sizeable Rashba-type spin-orbit splitting because of the substrate-induced potential difference between the two surfaces. The tunable gap and the spin-orbit coupling make these topological thin films ideal for electronic and spintronic device applications. © 2010 Macmillan Publishers Limited. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/175178
ISSN
2015 Impact Factor: 18.791
2015 SCImago Journal Rankings: 13.522
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorZhang, Yen_US
dc.contributor.authorHe, Ken_US
dc.contributor.authorChang, CZen_US
dc.contributor.authorSong, CLen_US
dc.contributor.authorWang, LLen_US
dc.contributor.authorChen, Xen_US
dc.contributor.authorJia, JFen_US
dc.contributor.authorFang, Zen_US
dc.contributor.authorDai, Xen_US
dc.contributor.authorShan, WYen_US
dc.contributor.authorShen, SQen_US
dc.contributor.authorNiu, Qen_US
dc.contributor.authorQi, XLen_US
dc.contributor.authorZhang, SCen_US
dc.contributor.authorMa, XCen_US
dc.contributor.authorXue, QKen_US
dc.date.accessioned2012-11-26T08:49:39Z-
dc.date.available2012-11-26T08:49:39Z-
dc.date.issued2010en_US
dc.identifier.citationNature Physics, 2010, v. 6 n. 8, p. 584-588en_US
dc.identifier.issn1745-2473en_US
dc.identifier.urihttp://hdl.handle.net/10722/175178-
dc.description.abstractA topological insulator1-9 is a new state of quantum matter that is characterized by a finite energy gap in the bulk and gapless modes flowing along the boundaries that are robust against disorder scattering. The topological protection of the surface state could be useful for both low-power electronics10 and error-tolerant quantum computing11,12. For a thin slab of three-dimensional topological insulator, the boundary modes from the opposite surfaces may be coupled by quantum tunnelling, so that a small, thickness-dependent gap is opened up13,15. Here we report such results from angle-resolved photoemission spectroscopy on Bi2 Se3 films of various thicknesses grown by molecular beam epitaxy. The energy gap opening is clearly seen when the thickness is below six quintuple layers. The gapped surface states also exhibit sizeable Rashba-type spin-orbit splitting because of the substrate-induced potential difference between the two surfaces. The tunable gap and the spin-orbit coupling make these topological thin films ideal for electronic and spintronic device applications. © 2010 Macmillan Publishers Limited. All rights reserved.en_US
dc.languageengen_US
dc.publisherNature Publishing Group. The Journal's web site is located at http://npg.nature.com/npg/servlet/Form?_action=submiten_US
dc.relation.ispartofNature Physicsen_US
dc.titleCrossover of the three-dimensional topological insulator Bi2 Se3 to the two-dimensional limiten_US
dc.typeArticleen_US
dc.identifier.emailShen, SQ: sshen@hkucc.hku.hken_US
dc.identifier.authorityShen, SQ=rp00775en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1038/nphys1689en_US
dc.identifier.scopuseid_2-s2.0-77955267672en_US
dc.identifier.hkuros242877-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-77955267672&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume6en_US
dc.identifier.issue8en_US
dc.identifier.spage584en_US
dc.identifier.epage588en_US
dc.identifier.isiWOS:000280559300013-
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridZhang, Y=7601333059en_US
dc.identifier.scopusauthoridHe, K=8726956700en_US
dc.identifier.scopusauthoridChang, CZ=36238000700en_US
dc.identifier.scopusauthoridSong, CL=35723047200en_US
dc.identifier.scopusauthoridWang, LL=7409189230en_US
dc.identifier.scopusauthoridChen, X=8509885100en_US
dc.identifier.scopusauthoridJia, JF=25930429900en_US
dc.identifier.scopusauthoridFang, Z=7402681557en_US
dc.identifier.scopusauthoridDai, X=9842770600en_US
dc.identifier.scopusauthoridShan, WY=36093352700en_US
dc.identifier.scopusauthoridShen, SQ=7403431266en_US
dc.identifier.scopusauthoridNiu, Q=7006052653en_US
dc.identifier.scopusauthoridQi, XL=8250038200en_US
dc.identifier.scopusauthoridZhang, SC=7409371247en_US
dc.identifier.scopusauthoridMa, XC=14011898800en_US
dc.identifier.scopusauthoridXue, QK=7201986973en_US
dc.identifier.citeulike11325600-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats