File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Geometric phase in eigenspace evolution of invariant and adiabatic action operators

TitleGeometric phase in eigenspace evolution of invariant and adiabatic action operators
Authors
Issue Date2005
PublisherAmerican Physical Society. The Journal's web site is located at http://prl.aps.org
Citation
Physical Review Letters, 2005, v. 95 n. 5 How to Cite?
AbstractThe theory of geometric phase is generalized to a cyclic evolution of the eigenspace of an invariant operator with N-fold degeneracy. The corresponding geometric phase is interpreted as a holonomy inherited from the universal Stiefel U(N) bundle over a Grassmann manifold. Most significantly, for an arbitrary initial state, this holonomy captures the inherent geometric feature of the state evolution that may not be cyclic. Moreover, a rigorous theory of geometric phase in the evolution of the eigenspace of an adiabatic action operator is also formulated, with the corresponding holonomy being elaborated by a pullback U(N) bundle. © 2005 The American Physical Society.
Persistent Identifierhttp://hdl.handle.net/10722/174971
ISSN
2015 Impact Factor: 7.645
2015 SCImago Journal Rankings: 3.731
References

 

DC FieldValueLanguage
dc.contributor.authorTeo, JCYen_US
dc.contributor.authorWang, ZDen_US
dc.date.accessioned2012-11-26T08:48:26Z-
dc.date.available2012-11-26T08:48:26Z-
dc.date.issued2005en_US
dc.identifier.citationPhysical Review Letters, 2005, v. 95 n. 5en_US
dc.identifier.issn0031-9007en_US
dc.identifier.urihttp://hdl.handle.net/10722/174971-
dc.description.abstractThe theory of geometric phase is generalized to a cyclic evolution of the eigenspace of an invariant operator with N-fold degeneracy. The corresponding geometric phase is interpreted as a holonomy inherited from the universal Stiefel U(N) bundle over a Grassmann manifold. Most significantly, for an arbitrary initial state, this holonomy captures the inherent geometric feature of the state evolution that may not be cyclic. Moreover, a rigorous theory of geometric phase in the evolution of the eigenspace of an adiabatic action operator is also formulated, with the corresponding holonomy being elaborated by a pullback U(N) bundle. © 2005 The American Physical Society.en_US
dc.languageengen_US
dc.publisherAmerican Physical Society. The Journal's web site is located at http://prl.aps.orgen_US
dc.relation.ispartofPhysical Review Lettersen_US
dc.titleGeometric phase in eigenspace evolution of invariant and adiabatic action operatorsen_US
dc.typeArticleen_US
dc.identifier.emailWang, ZD: zwang@hkucc.hku.hken_US
dc.identifier.authorityWang, ZD=rp00802en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1103/PhysRevLett.95.050406en_US
dc.identifier.scopuseid_2-s2.0-27144451762en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-27144451762&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume95en_US
dc.identifier.issue5en_US
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridTeo, JCY=24484858500en_US
dc.identifier.scopusauthoridWang, ZD=14828459100en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats