File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Regulation of post-translational modifications of the protein kinase LKB1: molecular mechanisms and physiologicalimplications

TitleRegulation of post-translational modifications of the protein kinase LKB1: molecular mechanisms and physiologicalimplications
Authors
Advisors
Advisor(s):Xu, AWang, Y
Issue Date2011
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Liu, L. [刘凌]. (2011). Regulation of post-translational modifications of the protein kinase LKB1 : molecular mechanisms and physiological implications. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4766083
AbstractBackground and objectives: Endothelial dysfunction and cancer are two of the important aspects of obesity-related medical complications, the prevalence of which is reaching an epidemic level worldwide. The protein kinase LKB1 has been shown to play opposite roles in these two metabolic diseases by promoting cellular senescence and inhibiting cell proliferation through regulating a series of its downstream targets. However, the molecular mechanisms wherebyLKB1 itself is regulated by its upstream molecules remains poorly understood. The major objectives of this study are to identify novel upstream regulators of LKB1 and to investigate how these upstream regulators modulate the subcellular localization and physiological functions of LKB1 by post-translational modifications. Key findings: 1. Our proteomic analysis demonstrated that LKB1 was modified by both acetylation and phosphorylation. The acetylation sites of mouseLKB1 include Lys48, Lys64and Lys312. The phosphorylation sites of mouseLKB1 include: Ser31, Thr32,Tyr36, Ser69, Thr71, Ser334and Thr336. 2. In both human embryonic kidney 293 (HEK293)cells and primary porcine aortic endothelial cells (PAECs), the nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase SirT1 attenuated the acetylation levels of LKB1,which consequently resulted in enhancedLKB1ubiquitination, thereby leading to the proteasome-mediated degradation of LKB1. 3. In primary PAECs, overexpression of SirT1 protected cells from cell cycle arrest and cellular senescence, whereas overexpression of LKB1 exhibited the opposite effects.SirT1 antagonizedLKB1-induced G1 phase arrest and cellular senescence by promoting the deacetylation and protein degradation of LKB1. 4. The in vitro phosphorylation assay and mass spectrometry analysis demonstrated that LKB1 could be phosphorylated by the Akt kinase at Ser334which was critical for the interaction between LKB1 and 14-3-3. The enhanced association between LKB1 and 14-3-3 subsequently attenuated the interaction between LKB1 and Ste20 related adaptor α(STRADα), which further promoted the nuclear accumulation of LKB1. 5. The cell proliferation and cell cycle distribution analysis of the stably-transfected MDA-MB-231 breast cancer cells demonstrated that overexpression of the LKB1 mutant S334D, which mimicked Ser334 phosphorylation and localized exclusively in the nucleus, completely lost its anti-tumor activities. On the other hand, the S334A mutation enhanced the tumor suppressive functions of LKB1. 6. Nude mice inoculated with the LKB1 S334A stably-transfected MDA-MB-231 cells exhibited delayed tumor onset, decreased tumor growth rate and tumor weight. By contrast, inoculation of nude mice with the MDA-MB-231 cells overexpressing LKB1 S334D mutation showed the opposite effects on these parameters. Conclusions: These results collectively suggest that the deacetylase SirT1 and the protein kinase Aktare the two important upstream regulators of LKB1. SirT1 prevents LKB1-induced cellular senescence and protect endothelial ageing by promoting proteasome-mediated degradation of LKB1. Akt inhibits the tumor-suppressive activity of LKB1 by enhancing the phosphorylation-dependent nuclear translocation. Further investigations on the precise mechanisms whereby SirT1 and Akt regulate LKB1 functions may help to design novel therapeutic strategies for treating obesity-related diseases, such as diabetes, cardiovascular disease and cancer.
DegreeDoctor of Philosophy
SubjectProtein kinases.
Post-translational modification.
Dept/ProgramMedicine

 

DC FieldValueLanguage
dc.contributor.advisorXu, A-
dc.contributor.advisorWang, Y-
dc.contributor.authorLiu, Ling-
dc.contributor.author刘凌-
dc.date.issued2011-
dc.identifier.citationLiu, L. [刘凌]. (2011). Regulation of post-translational modifications of the protein kinase LKB1 : molecular mechanisms and physiological implications. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4766083-
dc.description.abstractBackground and objectives: Endothelial dysfunction and cancer are two of the important aspects of obesity-related medical complications, the prevalence of which is reaching an epidemic level worldwide. The protein kinase LKB1 has been shown to play opposite roles in these two metabolic diseases by promoting cellular senescence and inhibiting cell proliferation through regulating a series of its downstream targets. However, the molecular mechanisms wherebyLKB1 itself is regulated by its upstream molecules remains poorly understood. The major objectives of this study are to identify novel upstream regulators of LKB1 and to investigate how these upstream regulators modulate the subcellular localization and physiological functions of LKB1 by post-translational modifications. Key findings: 1. Our proteomic analysis demonstrated that LKB1 was modified by both acetylation and phosphorylation. The acetylation sites of mouseLKB1 include Lys48, Lys64and Lys312. The phosphorylation sites of mouseLKB1 include: Ser31, Thr32,Tyr36, Ser69, Thr71, Ser334and Thr336. 2. In both human embryonic kidney 293 (HEK293)cells and primary porcine aortic endothelial cells (PAECs), the nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase SirT1 attenuated the acetylation levels of LKB1,which consequently resulted in enhancedLKB1ubiquitination, thereby leading to the proteasome-mediated degradation of LKB1. 3. In primary PAECs, overexpression of SirT1 protected cells from cell cycle arrest and cellular senescence, whereas overexpression of LKB1 exhibited the opposite effects.SirT1 antagonizedLKB1-induced G1 phase arrest and cellular senescence by promoting the deacetylation and protein degradation of LKB1. 4. The in vitro phosphorylation assay and mass spectrometry analysis demonstrated that LKB1 could be phosphorylated by the Akt kinase at Ser334which was critical for the interaction between LKB1 and 14-3-3. The enhanced association between LKB1 and 14-3-3 subsequently attenuated the interaction between LKB1 and Ste20 related adaptor α(STRADα), which further promoted the nuclear accumulation of LKB1. 5. The cell proliferation and cell cycle distribution analysis of the stably-transfected MDA-MB-231 breast cancer cells demonstrated that overexpression of the LKB1 mutant S334D, which mimicked Ser334 phosphorylation and localized exclusively in the nucleus, completely lost its anti-tumor activities. On the other hand, the S334A mutation enhanced the tumor suppressive functions of LKB1. 6. Nude mice inoculated with the LKB1 S334A stably-transfected MDA-MB-231 cells exhibited delayed tumor onset, decreased tumor growth rate and tumor weight. By contrast, inoculation of nude mice with the MDA-MB-231 cells overexpressing LKB1 S334D mutation showed the opposite effects on these parameters. Conclusions: These results collectively suggest that the deacetylase SirT1 and the protein kinase Aktare the two important upstream regulators of LKB1. SirT1 prevents LKB1-induced cellular senescence and protect endothelial ageing by promoting proteasome-mediated degradation of LKB1. Akt inhibits the tumor-suppressive activity of LKB1 by enhancing the phosphorylation-dependent nuclear translocation. Further investigations on the precise mechanisms whereby SirT1 and Akt regulate LKB1 functions may help to design novel therapeutic strategies for treating obesity-related diseases, such as diabetes, cardiovascular disease and cancer.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.source.urihttp://hub.hku.hk/bib/B47660831-
dc.subject.lcshProtein kinases.-
dc.subject.lcshPost-translational modification.-
dc.titleRegulation of post-translational modifications of the protein kinase LKB1: molecular mechanisms and physiologicalimplications-
dc.typePG_Thesis-
dc.identifier.hkulb4766083-
dc.description.thesisnameDoctor of Philosophy-
dc.description.thesislevelDoctoral-
dc.description.thesisdisciplineMedicine-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b4766083-
dc.date.hkucongregation2011-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats