File Download
 
 
Supplementary

Postgraduate Thesis: Numerical study of topological insulators and semi-metals
  • Basic View
  • Metadata View
  • XML View
TitleNumerical study of topological insulators and semi-metals
 
AuthorsChu, Ruilin.
储瑞林.
 
Issue Date2011
 
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
 
AbstractTopological insulators(TIs) constitute a novel state of quantum matter which possesses non-trivial topological properties. Although discovered only in the recent few years, TIs have attracted intensive interest among the community of condensed matter physics and material science. TIs are insulating in the bulk but have conductive gapless edge or surface states on the boundaries, which have their origin in the nontrivial bulk band topology that is induced by the strong spin-orbital interactions in the materials. Existing in all dimensions, TIs exhibit a variety of exotic physics such as quantum spin Hall effect, momentum-spin locked surface states, Dirac fermion transport, quantized anomalous Hall effect, Majorana fermions, etc. In this thesis, I study the transport properties of 2D and 3D TIs by numerical approaches. As an introduction, a brief review of TIs is given. A detailed description of the numerical methods is also presented. The results can be summarized in four aspects. First, disorder is found be able to induce a non-trivial TI from an originally trivial band insulator, where the conductance of a two terminal device drops to nearly zero and then rises to form an anomalous plateau as disorder strength is increased, and finally all the states become localized. The real space Chern number calculation as well as the effective medium theory suggests that disorder is fundamentally responsible for the emerging of the extended helical edge states in this system. We also present a levitation and pair annihilation picture of the extended states for this model. Second, by making the 2D TIs into singly connected quantum point contacts(QPCs), I show a coherent and fast Aharonov-Bohm oscillation of conductance caused by the quantum interference of the helical edge states. This oscillation not only happens against weak magnetic field but also against the gate voltage in the zero-field condition. This results in a giant edge magnetoresistance of the device in weak magnetic fields. The amplitude of the magnetoresistance is controllable by adjusting either the QPCs' slit width or the interference loop size in the device. The oscillation is found robust against disorder. Third, by applying a uniform spin-splitting Zeeman field in the bulk of the 3D TI whose surface states can be viewed as massless Dirac fermions, I find chiral edge states on the gapped surfaces of the 3D TI, which can be considered as interface states between domains of massive and massless Dirac fermions. Effectively these states are result of splitting of a perfect interface conducting channel. This picture is confirmed by the Landauer-B?ttiker calculations in four-terminal Hall bars. Finally, I propose the concept of topological semi-metals. By calculating the local density of states on the surfaces, I demonstrate that surface states and the gapless Dirac cone already exist in the system although the bulk is not gapped. We show how the uni-axial strain induces an insulating band gap and turn the semi-metal into true TI. We predict existence of quantum spin Hall effect in the thin films made of these materials, which can be significantly enhanced by disorders.
 
AdvisorsShen, S
 
DegreeDoctor of Philosophy
 
SubjectCondensed matter.
Semimetals.
 
Dept/ProgramPhysics
 
DC FieldValue
dc.contributor.advisorShen, S
 
dc.contributor.authorChu, Ruilin.
 
dc.contributor.author储瑞林.
 
dc.date.hkucongregation2012
 
dc.date.issued2011
 
dc.description.abstractTopological insulators(TIs) constitute a novel state of quantum matter which possesses non-trivial topological properties. Although discovered only in the recent few years, TIs have attracted intensive interest among the community of condensed matter physics and material science. TIs are insulating in the bulk but have conductive gapless edge or surface states on the boundaries, which have their origin in the nontrivial bulk band topology that is induced by the strong spin-orbital interactions in the materials. Existing in all dimensions, TIs exhibit a variety of exotic physics such as quantum spin Hall effect, momentum-spin locked surface states, Dirac fermion transport, quantized anomalous Hall effect, Majorana fermions, etc. In this thesis, I study the transport properties of 2D and 3D TIs by numerical approaches. As an introduction, a brief review of TIs is given. A detailed description of the numerical methods is also presented. The results can be summarized in four aspects. First, disorder is found be able to induce a non-trivial TI from an originally trivial band insulator, where the conductance of a two terminal device drops to nearly zero and then rises to form an anomalous plateau as disorder strength is increased, and finally all the states become localized. The real space Chern number calculation as well as the effective medium theory suggests that disorder is fundamentally responsible for the emerging of the extended helical edge states in this system. We also present a levitation and pair annihilation picture of the extended states for this model. Second, by making the 2D TIs into singly connected quantum point contacts(QPCs), I show a coherent and fast Aharonov-Bohm oscillation of conductance caused by the quantum interference of the helical edge states. This oscillation not only happens against weak magnetic field but also against the gate voltage in the zero-field condition. This results in a giant edge magnetoresistance of the device in weak magnetic fields. The amplitude of the magnetoresistance is controllable by adjusting either the QPCs' slit width or the interference loop size in the device. The oscillation is found robust against disorder. Third, by applying a uniform spin-splitting Zeeman field in the bulk of the 3D TI whose surface states can be viewed as massless Dirac fermions, I find chiral edge states on the gapped surfaces of the 3D TI, which can be considered as interface states between domains of massive and massless Dirac fermions. Effectively these states are result of splitting of a perfect interface conducting channel. This picture is confirmed by the Landauer-B?ttiker calculations in four-terminal Hall bars. Finally, I propose the concept of topological semi-metals. By calculating the local density of states on the surfaces, I demonstrate that surface states and the gapless Dirac cone already exist in the system although the bulk is not gapped. We show how the uni-axial strain induces an insulating band gap and turn the semi-metal into true TI. We predict existence of quantum spin Hall effect in the thin films made of these materials, which can be significantly enhanced by disorders.
 
dc.description.naturepublished_or_final_version
 
dc.description.thesisdisciplinePhysics
 
dc.description.thesisleveldoctoral
 
dc.description.thesisnameDoctor of Philosophy
 
dc.identifier.hkulb4716325
 
dc.languageeng
 
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)
 
dc.relation.ispartofHKU Theses Online (HKUTO)
 
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.
 
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License
 
dc.source.urihttp://hub.hku.hk/bib/B47163252
 
dc.subject.lcshCondensed matter.
 
dc.subject.lcshSemimetals.
 
dc.titleNumerical study of topological insulators and semi-metals
 
dc.typePG_Thesis
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.advisor>Shen, S</contributor.advisor>
<contributor.author>Chu, Ruilin.</contributor.author>
<contributor.author>&#20648;&#29790;&#26519;.</contributor.author>
<date.issued>2011</date.issued>
<description.abstract>&#65279;Topological insulators(TIs) constitute a novel state of quantum matter which possesses non-trivial topological properties. Although discovered only in the recent few years, TIs have attracted intensive interest among the community of condensed matter physics and material science. TIs are insulating in the bulk but have conductive gapless edge or surface states on the boundaries, which have their origin in the nontrivial bulk band topology that is induced by the strong spin-orbital interactions in the materials. Existing in all dimensions, TIs exhibit a variety of exotic physics such as quantum spin Hall effect, momentum-spin locked surface states, Dirac fermion transport, quantized anomalous Hall effect, Majorana fermions, etc. In this thesis,

I study the transport properties of 2D and 3D TIs by numerical approaches. As an introduction, a brief review of TIs is given. A detailed description of the numerical methods is also presented. The results can be summarized in four aspects. First, disorder is found be able to induce a non-trivial TI from an originally trivial band insulator, where the conductance of a two terminal device drops to nearly zero and then rises to form an anomalous plateau as disorder strength is increased, and finally all the states become localized. The real space Chern number calculation as well as the effective medium theory suggests that disorder is fundamentally responsible for the emerging of the extended helical edge states in this system. We also present a levitation and pair annihilation picture of the extended states for this model. Second, by making the 2D TIs into singly connected quantum point contacts(QPCs), I show a coherent and fast Aharonov-Bohm oscillation of conductance caused by the quantum interference of the helical edge states. This oscillation not only happens against weak magnetic field but also against the gate voltage in the zero-field condition.

This results in a giant edge magnetoresistance of the device in weak magnetic fields. The amplitude of the magnetoresistance is controllable by adjusting either the

QPCs&apos; slit width or the interference loop size in the device. The oscillation is found robust against disorder. Third, by applying a uniform spin-splitting Zeeman field in the bulk of the 3D TI whose surface states can be viewed as massless Dirac fermions,

I find chiral edge states on the gapped surfaces of the 3D TI, which can be considered as interface states between domains of massive and massless Dirac fermions.

Effectively these states are result of splitting of a perfect interface conducting channel. This picture is confirmed by the Landauer-B?ttiker calculations in four-terminal Hall bars. Finally, I propose the concept of topological semi-metals. By calculating the local density of states on the surfaces, I demonstrate that surface states and the gapless

Dirac cone already exist in the system although the bulk is not gapped. We show how the uni-axial strain induces an insulating band gap and turn the semi-metal into true TI. We predict existence of quantum spin Hall effect in the thin films made of these materials, which can be significantly enhanced by disorders.</description.abstract>
<language>eng</language>
<publisher>The University of Hong Kong (Pokfulam, Hong Kong)</publisher>
<relation.ispartof>HKU Theses Online (HKUTO)</relation.ispartof>
<rights>The author retains all proprietary rights, (such as patent rights) and the right to use in future works.</rights>
<rights>Creative Commons: Attribution 3.0 Hong Kong License</rights>
<source.uri>http://hub.hku.hk/bib/B47163252</source.uri>
<subject.lcsh>Condensed matter.</subject.lcsh>
<subject.lcsh>Semimetals.</subject.lcsh>
<title>Numerical study of topological insulators and semi-metals</title>
<type>PG_Thesis</type>
<identifier.hkul>b4716325</identifier.hkul>
<description.thesisname>Doctor of Philosophy</description.thesisname>
<description.thesislevel>doctoral</description.thesislevel>
<description.thesisdiscipline>Physics</description.thesisdiscipline>
<description.nature>published_or_final_version</description.nature>
<date.hkucongregation>2012</date.hkucongregation>
<bitstream.url>http://hub.hku.hk/bitstream/10722/174324/1/FullText.pdf</bitstream.url>
</item>