File Download
 
 
Supplementary

Postgraduate Thesis: Effect of mushroom extract on endothelial function
  • Basic View
  • Metadata View
  • XML View
TitleEffect of mushroom extract on endothelial function
 
AuthorsZhou, Tianjiao.
周天骄.
 
Issue Date2012
 
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
 
AbstractHyperglycemia is associated with a higher risk for the development of cardiovascular diseases such as atherosclerosis and hypertension. Hyperglycemia-induced generation of reactive oxygen species and the endothelial dysfunction largely account for this phenomenon. Ergothioneine is a naturally occurring amino acid that is abundantly found in mushroom. Numerous benefits have been found associated with ergothioneine such as cation chelating, regulation of gene expression, improvement in immunity and bioenergetics, and of most concern its antioxidative property. The aim of this study was to investigate whether mushroom extract and synthetic ergothioneine can exert protective effect on endothelial cells against oxidative stress. Human umbilical vein endothelial cells served as the cell model. Pyrogallol, hydrogen peroxide and high glucose were used to create the oxidative stress condition in endothelial cells. Biochemical assay was used to measure the viability of the cells. It was found that only the mushroom extract could significantly reduce the cell death induced by pyrogallol. Both the mushroom extract and synthetic ergothioneine significantly decreased the cell death induced by high glucose. However, neither mushroom extract nor synthetic ergothioneine have any positive effect on hydrogen peroxide-induced cell death. These results indicated that mushroom extract and synthetic ergothioneine did exert certain level of protective effect on endothelial cells. However, this protective effect is relatively weak. Besides, it is still unclear if antioxidation is the sole mechanism accounting for the cytoprotective effect of ergothioneine. Further investigation is required to examine if other mechanisms are also involved.
 
DegreeMaster of Medical Sciences
 
SubjectSulphur amino acids.
Antioxidants.
Vascular endothelium.
 
Dept/ProgramPharmacology and Pharmacy
 
DC FieldValue
dc.contributor.authorZhou, Tianjiao.
 
dc.contributor.author周天骄.
 
dc.date.hkucongregation2012
 
dc.date.issued2012
 
dc.description.abstractHyperglycemia is associated with a higher risk for the development of cardiovascular diseases such as atherosclerosis and hypertension. Hyperglycemia-induced generation of reactive oxygen species and the endothelial dysfunction largely account for this phenomenon. Ergothioneine is a naturally occurring amino acid that is abundantly found in mushroom. Numerous benefits have been found associated with ergothioneine such as cation chelating, regulation of gene expression, improvement in immunity and bioenergetics, and of most concern its antioxidative property. The aim of this study was to investigate whether mushroom extract and synthetic ergothioneine can exert protective effect on endothelial cells against oxidative stress. Human umbilical vein endothelial cells served as the cell model. Pyrogallol, hydrogen peroxide and high glucose were used to create the oxidative stress condition in endothelial cells. Biochemical assay was used to measure the viability of the cells. It was found that only the mushroom extract could significantly reduce the cell death induced by pyrogallol. Both the mushroom extract and synthetic ergothioneine significantly decreased the cell death induced by high glucose. However, neither mushroom extract nor synthetic ergothioneine have any positive effect on hydrogen peroxide-induced cell death. These results indicated that mushroom extract and synthetic ergothioneine did exert certain level of protective effect on endothelial cells. However, this protective effect is relatively weak. Besides, it is still unclear if antioxidation is the sole mechanism accounting for the cytoprotective effect of ergothioneine. Further investigation is required to examine if other mechanisms are also involved.
 
dc.description.naturepublished_or_final_version
 
dc.description.thesisdisciplinePharmacology and Pharmacy
 
dc.description.thesislevelmaster's
 
dc.description.thesisnameMaster of Medical Sciences
 
dc.identifier.hkulb4833445
 
dc.languageeng
 
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)
 
dc.relation.ispartofHKU Theses Online (HKUTO)
 
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.
 
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License
 
dc.source.urihttp://hub.hku.hk/bib/B48334455
 
dc.subject.lcshSulphur amino acids.
 
dc.subject.lcshAntioxidants.
 
dc.subject.lcshVascular endothelium.
 
dc.titleEffect of mushroom extract on endothelial function
 
dc.typePG_Thesis
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Zhou, Tianjiao.</contributor.author>
<contributor.author>&#21608;&#22825;&#39556;.</contributor.author>
<date.issued>2012</date.issued>
<description.abstract>&#65279;Hyperglycemia is associated with a higher risk for the development of cardiovascular diseases such as atherosclerosis and hypertension. Hyperglycemia-induced generation of reactive oxygen species and the endothelial dysfunction largely account for this phenomenon. Ergothioneine is a naturally occurring amino acid that is abundantly found in mushroom. Numerous benefits have been found associated with ergothioneine such as cation chelating, regulation of gene expression, improvement in immunity and bioenergetics, and of most concern its antioxidative property.



The aim of this study was to investigate whether mushroom extract and synthetic ergothioneine can exert protective effect on endothelial cells against oxidative stress. Human umbilical vein endothelial cells served as the cell model. Pyrogallol, hydrogen peroxide and high glucose were used to create the oxidative stress condition in endothelial cells. Biochemical assay was used to measure the viability of the cells. It was found that only the mushroom extract could significantly reduce the cell death induced by pyrogallol. Both the mushroom extract and synthetic ergothioneine significantly decreased the cell death induced by high glucose. However, neither mushroom extract nor synthetic ergothioneine have any positive effect on hydrogen peroxide-induced cell death.



These results indicated that mushroom extract and synthetic ergothioneine did exert certain level of protective effect on endothelial cells. However, this protective effect is relatively weak. Besides, it is still unclear if antioxidation is the sole mechanism accounting for the cytoprotective effect of ergothioneine. Further investigation is required to examine if other mechanisms are also involved.</description.abstract>
<language>eng</language>
<publisher>The University of Hong Kong (Pokfulam, Hong Kong)</publisher>
<relation.ispartof>HKU Theses Online (HKUTO)</relation.ispartof>
<rights>The author retains all proprietary rights, (such as patent rights) and the right to use in future works.</rights>
<rights>Creative Commons: Attribution 3.0 Hong Kong License</rights>
<source.uri>http://hub.hku.hk/bib/B48334455</source.uri>
<subject.lcsh>Sulphur amino acids.</subject.lcsh>
<subject.lcsh>Antioxidants.</subject.lcsh>
<subject.lcsh>Vascular endothelium.</subject.lcsh>
<title>Effect of mushroom extract on endothelial function</title>
<type>PG_Thesis</type>
<identifier.hkul>b4833445</identifier.hkul>
<description.thesisname>Master of Medical Sciences</description.thesisname>
<description.thesislevel>master&apos;s</description.thesislevel>
<description.thesisdiscipline>Pharmacology and Pharmacy</description.thesisdiscipline>
<description.nature>published_or_final_version</description.nature>
<date.hkucongregation>2012</date.hkucongregation>
<bitstream.url>http://hub.hku.hk/bitstream/10722/173887/1/FullText.pdf</bitstream.url>
</item>