File Download
Supplementary

postgraduate thesis: Medial axis simplification based on global geodesic slope and accumulated hyperbolic distance

TitleMedial axis simplification based on global geodesic slope and accumulated hyperbolic distance
Authors
Advisors
Advisor(s):Chan, KPWang, WP
Issue Date2012
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
AbstractThe medial axis is an important shape representation and the computation of the medial axis is a fundamental research problem in computer graphics. Practically, the medial axis is widely used in various aspects of computer graphics, such as shape analysis, image segmentation, skeleton extraction and mesh generation and so forth. However, the applications of the medial axis have been limited by its sensitivity to boundary perturbations. This characteristic may lead to a number of noise branches and increase the complexity of the medial axis. To solve the sensitivity problem, it is critical to simplify the medial axis. This thesis first investigates the algorithms for computing medial axes of different input shapes. Several algorithms for the filtration of medial axes are then reviewed, such as the local importance measurement algorithms, boundary smoothness algorithms, and the global algorithms. Two novel algorithms for the simplification of the medial axis are proposed to generate a stable and simplified medial axis as well as its reconstructed boundary. The developed Global Geodesic Slope(GGS) algorithm for the medial axis simplification is based on the global geodesic slope defined in this thesis, which combines the advantages of the global and the local algorithms. The GGS algorithm prunes the medial axis according to local features as well as the relative size of the shape. It is less sensitive to boundary noises than the local algorithms, and can maintain the features of the shape in highly concave regions while the global algorithms may not. The other simplification algorithm we propose is the Accumulated Hyperbolic Distance(AHD) algorithm. It directly uses the evaluation criterion of the error, accumulated hyperbolic distance defined in this thesis, as the pruning measurement in the filtration process. It guarantees the upper bound of the error between the reconstructed shape and the original one within the defined threshold. The AHD algorithm avoids sudden changes of the reconstructed shape as the defined threshold changes.
DegreeMaster of Philosophy
SubjectComputer graphics.
Computer algorithms.
Dept/ProgramComputer Science

 

DC FieldValueLanguage
dc.contributor.advisorChan, KP-
dc.contributor.advisorWang, WP-
dc.contributor.authorWang, Rui-
dc.contributor.author王睿-
dc.date.issued2012-
dc.description.abstractThe medial axis is an important shape representation and the computation of the medial axis is a fundamental research problem in computer graphics. Practically, the medial axis is widely used in various aspects of computer graphics, such as shape analysis, image segmentation, skeleton extraction and mesh generation and so forth. However, the applications of the medial axis have been limited by its sensitivity to boundary perturbations. This characteristic may lead to a number of noise branches and increase the complexity of the medial axis. To solve the sensitivity problem, it is critical to simplify the medial axis. This thesis first investigates the algorithms for computing medial axes of different input shapes. Several algorithms for the filtration of medial axes are then reviewed, such as the local importance measurement algorithms, boundary smoothness algorithms, and the global algorithms. Two novel algorithms for the simplification of the medial axis are proposed to generate a stable and simplified medial axis as well as its reconstructed boundary. The developed Global Geodesic Slope(GGS) algorithm for the medial axis simplification is based on the global geodesic slope defined in this thesis, which combines the advantages of the global and the local algorithms. The GGS algorithm prunes the medial axis according to local features as well as the relative size of the shape. It is less sensitive to boundary noises than the local algorithms, and can maintain the features of the shape in highly concave regions while the global algorithms may not. The other simplification algorithm we propose is the Accumulated Hyperbolic Distance(AHD) algorithm. It directly uses the evaluation criterion of the error, accumulated hyperbolic distance defined in this thesis, as the pruning measurement in the filtration process. It guarantees the upper bound of the error between the reconstructed shape and the original one within the defined threshold. The AHD algorithm avoids sudden changes of the reconstructed shape as the defined threshold changes.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.source.urihttp://hub.hku.hk/bib/B48330139-
dc.subject.lcshComputer graphics.-
dc.subject.lcshComputer algorithms.-
dc.titleMedial axis simplification based on global geodesic slope and accumulated hyperbolic distance-
dc.typePG_Thesis-
dc.identifier.hkulb4833013-
dc.description.thesisnameMaster of Philosophy-
dc.description.thesislevelMaster-
dc.description.thesisdisciplineComputer Science-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b4833013-
dc.date.hkucongregation2012-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats