File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Global bounded synchronization of general dynamical networks with nonidentical nodes
  • Basic View
  • Metadata View
  • XML View
TitleGlobal bounded synchronization of general dynamical networks with nonidentical nodes
 
AuthorsZhao, J2
Hill, DJ1
Liu, T3
 
KeywordsDynamical Networks
Nonidentical Nodes
Synchronization
Time-Varying Systems
 
Issue Date2012
 
CitationIeee Transactions On Automatic Control, 2012, v. 57 n. 10, p. 2656-2662 [How to Cite?]
DOI: http://dx.doi.org/10.1109/TAC.2012.2190206
 
AbstractThis note addresses the problem of synchronization for general dynamical networks with nonidentical nodes. The coupling strength, outer coupling configuration and inner connection in such networks are all time varying. Neither an equilibrium for each node nor a synchronization manifold is assumed to exist. An estimate of the convergence domain for a general class of time-varying nonlinear systems is given. By introducing the average dynamics of all nodes and based on this estimate, a criterion of global synchronization in the sense of boundedness of the maximum state deviation between nodes is developed. An explicit bound of the maximum state deviation between nodes is obtained by the maximum difference between each node dynamics and the average dynamics. The proposed criterion is an extension of several related synchronization criteria for the case of identical nodes to the case of nonidentical nodes. © 2012 IEEE.
 
ISSN0018-9286
2013 Impact Factor: 3.167
2013 SCImago Journal Rankings: 2.992
 
DOIhttp://dx.doi.org/10.1109/TAC.2012.2190206
 
ISI Accession Number IDWOS:000309240400023
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorZhao, J
 
dc.contributor.authorHill, DJ
 
dc.contributor.authorLiu, T
 
dc.date.accessioned2012-10-25T04:54:31Z
 
dc.date.available2012-10-25T04:54:31Z
 
dc.date.issued2012
 
dc.description.abstractThis note addresses the problem of synchronization for general dynamical networks with nonidentical nodes. The coupling strength, outer coupling configuration and inner connection in such networks are all time varying. Neither an equilibrium for each node nor a synchronization manifold is assumed to exist. An estimate of the convergence domain for a general class of time-varying nonlinear systems is given. By introducing the average dynamics of all nodes and based on this estimate, a criterion of global synchronization in the sense of boundedness of the maximum state deviation between nodes is developed. An explicit bound of the maximum state deviation between nodes is obtained by the maximum difference between each node dynamics and the average dynamics. The proposed criterion is an extension of several related synchronization criteria for the case of identical nodes to the case of nonidentical nodes. © 2012 IEEE.
 
dc.description.naturelink_to_subscribed_fulltext
 
dc.identifier.citationIeee Transactions On Automatic Control, 2012, v. 57 n. 10, p. 2656-2662 [How to Cite?]
DOI: http://dx.doi.org/10.1109/TAC.2012.2190206
 
dc.identifier.doihttp://dx.doi.org/10.1109/TAC.2012.2190206
 
dc.identifier.epage2662
 
dc.identifier.isiWOS:000309240400023
 
dc.identifier.issn0018-9286
2013 Impact Factor: 3.167
2013 SCImago Journal Rankings: 2.992
 
dc.identifier.issue10
 
dc.identifier.scopuseid_2-s2.0-84866887350
 
dc.identifier.spage2656
 
dc.identifier.urihttp://hdl.handle.net/10722/169740
 
dc.identifier.volume57
 
dc.languageeng
 
dc.publisher.placeUnited States
 
dc.relation.ispartofIEEE Transactions on Automatic Control
 
dc.relation.referencesReferences in Scopus
 
dc.subjectDynamical Networks
 
dc.subjectNonidentical Nodes
 
dc.subjectSynchronization
 
dc.subjectTime-Varying Systems
 
dc.titleGlobal bounded synchronization of general dynamical networks with nonidentical nodes
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Zhao, J</contributor.author>
<contributor.author>Hill, DJ</contributor.author>
<contributor.author>Liu, T</contributor.author>
<date.accessioned>2012-10-25T04:54:31Z</date.accessioned>
<date.available>2012-10-25T04:54:31Z</date.available>
<date.issued>2012</date.issued>
<identifier.citation>Ieee Transactions On Automatic Control, 2012, v. 57 n. 10, p. 2656-2662</identifier.citation>
<identifier.issn>0018-9286</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/169740</identifier.uri>
<description.abstract>This note addresses the problem of synchronization for general dynamical networks with nonidentical nodes. The coupling strength, outer coupling configuration and inner connection in such networks are all time varying. Neither an equilibrium for each node nor a synchronization manifold is assumed to exist. An estimate of the convergence domain for a general class of time-varying nonlinear systems is given. By introducing the average dynamics of all nodes and based on this estimate, a criterion of global synchronization in the sense of boundedness of the maximum state deviation between nodes is developed. An explicit bound of the maximum state deviation between nodes is obtained by the maximum difference between each node dynamics and the average dynamics. The proposed criterion is an extension of several related synchronization criteria for the case of identical nodes to the case of nonidentical nodes. &#169; 2012 IEEE.</description.abstract>
<language>eng</language>
<relation.ispartof>IEEE Transactions on Automatic Control</relation.ispartof>
<subject>Dynamical Networks</subject>
<subject>Nonidentical Nodes</subject>
<subject>Synchronization</subject>
<subject>Time-Varying Systems</subject>
<title>Global bounded synchronization of general dynamical networks with nonidentical nodes</title>
<type>Article</type>
<description.nature>link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1109/TAC.2012.2190206</identifier.doi>
<identifier.scopus>eid_2-s2.0-84866887350</identifier.scopus>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-84866887350&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>57</identifier.volume>
<identifier.issue>10</identifier.issue>
<identifier.spage>2656</identifier.spage>
<identifier.epage>2662</identifier.epage>
<identifier.isi>WOS:000309240400023</identifier.isi>
<publisher.place>United States</publisher.place>
</item>
Author Affiliations
  1. University of Sydney
  2. Northeastern University China
  3. Australian National University