File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Impulsive synchronization of chaotic Lur'e systems by linear static measurement feedback: An LMI approach
  • Basic View
  • Metadata View
  • XML View
TitleImpulsive synchronization of chaotic Lur'e systems by linear static measurement feedback: An LMI approach
 
AuthorsLu, JG1
Hill, DJ2
 
KeywordsChaos
Impulsive Control
Linear Matrix Inequallities
Lur'e System
Synchronization
 
Issue Date2007
 
CitationIeee Transactions On Circuits And Systems Ii: Express Briefs, 2007, v. 54 n. 8, p. 710-714 [How to Cite?]
DOI: http://dx.doi.org/10.1109/TCSII.2007.898468
 
AbstractIn this brief, we consider impulsive control for master-slave synchronization schemes that consist of identical chaotic Lur'e systems. Impulsive control laws are investigated which make use of linear static measurement feedback, instead of full state feedback. A less conservative sufficient condition than existing results for global asymptotic impulsive synchronization is presented, in which synchronization is proven for the error between the full state vectors. And then an linear matrix inequality (LMI)-based approach for designing linear static output feedback impulsive control laws to globally asymptotically synchronize Lur'e chaotic systems is derived. With the help of the LMI solvers, we can easily obtain the linear output feedback impulsive controller and the bound of the impulsive interval for global asymptotic synchronization. The method is illustrated on Chua's circuit. © 2007 IEEE.
 
ISSN1057-7130
 
DOIhttp://dx.doi.org/10.1109/TCSII.2007.898468
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorLu, JG
 
dc.contributor.authorHill, DJ
 
dc.date.accessioned2012-10-25T04:54:18Z
 
dc.date.available2012-10-25T04:54:18Z
 
dc.date.issued2007
 
dc.description.abstractIn this brief, we consider impulsive control for master-slave synchronization schemes that consist of identical chaotic Lur'e systems. Impulsive control laws are investigated which make use of linear static measurement feedback, instead of full state feedback. A less conservative sufficient condition than existing results for global asymptotic impulsive synchronization is presented, in which synchronization is proven for the error between the full state vectors. And then an linear matrix inequality (LMI)-based approach for designing linear static output feedback impulsive control laws to globally asymptotically synchronize Lur'e chaotic systems is derived. With the help of the LMI solvers, we can easily obtain the linear output feedback impulsive controller and the bound of the impulsive interval for global asymptotic synchronization. The method is illustrated on Chua's circuit. © 2007 IEEE.
 
dc.description.naturelink_to_subscribed_fulltext
 
dc.identifier.citationIeee Transactions On Circuits And Systems Ii: Express Briefs, 2007, v. 54 n. 8, p. 710-714 [How to Cite?]
DOI: http://dx.doi.org/10.1109/TCSII.2007.898468
 
dc.identifier.doihttp://dx.doi.org/10.1109/TCSII.2007.898468
 
dc.identifier.epage714
 
dc.identifier.issn1057-7130
 
dc.identifier.issue8
 
dc.identifier.scopuseid_2-s2.0-34547913095
 
dc.identifier.spage710
 
dc.identifier.urihttp://hdl.handle.net/10722/169704
 
dc.identifier.volume54
 
dc.languageeng
 
dc.publisher.placeUnited States
 
dc.relation.ispartofIEEE Transactions on Circuits and Systems II: Express Briefs
 
dc.relation.referencesReferences in Scopus
 
dc.subjectChaos
 
dc.subjectImpulsive Control
 
dc.subjectLinear Matrix Inequallities
 
dc.subjectLur'e System
 
dc.subjectSynchronization
 
dc.titleImpulsive synchronization of chaotic Lur'e systems by linear static measurement feedback: An LMI approach
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Lu, JG</contributor.author>
<contributor.author>Hill, DJ</contributor.author>
<date.accessioned>2012-10-25T04:54:18Z</date.accessioned>
<date.available>2012-10-25T04:54:18Z</date.available>
<date.issued>2007</date.issued>
<identifier.citation>Ieee Transactions On Circuits And Systems Ii: Express Briefs, 2007, v. 54 n. 8, p. 710-714</identifier.citation>
<identifier.issn>1057-7130</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/169704</identifier.uri>
<description.abstract>In this brief, we consider impulsive control for master-slave synchronization schemes that consist of identical chaotic Lur&apos;e systems. Impulsive control laws are investigated which make use of linear static measurement feedback, instead of full state feedback. A less conservative sufficient condition than existing results for global asymptotic impulsive synchronization is presented, in which synchronization is proven for the error between the full state vectors. And then an linear matrix inequality (LMI)-based approach for designing linear static output feedback impulsive control laws to globally asymptotically synchronize Lur&apos;e chaotic systems is derived. With the help of the LMI solvers, we can easily obtain the linear output feedback impulsive controller and the bound of the impulsive interval for global asymptotic synchronization. The method is illustrated on Chua&apos;s circuit. &#169; 2007 IEEE.</description.abstract>
<language>eng</language>
<relation.ispartof>IEEE Transactions on Circuits and Systems II: Express Briefs</relation.ispartof>
<subject>Chaos</subject>
<subject>Impulsive Control</subject>
<subject>Linear Matrix Inequallities</subject>
<subject>Lur&apos;e System</subject>
<subject>Synchronization</subject>
<title>Impulsive synchronization of chaotic Lur&apos;e systems by linear static measurement feedback: An LMI approach</title>
<type>Article</type>
<description.nature>link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1109/TCSII.2007.898468</identifier.doi>
<identifier.scopus>eid_2-s2.0-34547913095</identifier.scopus>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-34547913095&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>54</identifier.volume>
<identifier.issue>8</identifier.issue>
<identifier.spage>710</identifier.spage>
<identifier.epage>714</identifier.epage>
<publisher.place>United States</publisher.place>
</item>
Author Affiliations
  1. Shanghai Jiaotong University
  2. Australian National University