File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A model for the effective barrier height observed with a scanning tunneling microscope

TitleA model for the effective barrier height observed with a scanning tunneling microscope
Authors
KeywordsElectron Tunnelling
Mathematical Model
Scanning Tunnelling Microscopy
Issue Date1995
Citation
Journal Of Electroanalytical Chemistry, 1995, v. 396 n. 1-2, p. 303-307 How to Cite?
AbstractWe consider electron exchange between a metal tip and a metal electrode immersed in an aqueous solution. The tip and the substrate are modeled as jellium; the solution is treated on the Gouy-Chapman level. We construct an effective energy barrier for the tunneling electron by a superposition of its interaction with the two metals and an approximate solution of the nonlinear Poisson-Boltzmann equation. The rate of electron tunneling is calculated by solving the appropriate Schrödinger equation; the effective barrier height is then obtained by calculating the change of the tunneling current with distance. © 1995.
Persistent Identifierhttp://hdl.handle.net/10722/167361
ISSN
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorPecina, Oen_US
dc.contributor.authorSchmickler, Wen_US
dc.contributor.authorChan, KYen_US
dc.contributor.authorHenderson, DJen_US
dc.date.accessioned2012-10-08T03:06:03Z-
dc.date.available2012-10-08T03:06:03Z-
dc.date.issued1995en_US
dc.identifier.citationJournal Of Electroanalytical Chemistry, 1995, v. 396 n. 1-2, p. 303-307en_US
dc.identifier.issn0022-0728en_US
dc.identifier.urihttp://hdl.handle.net/10722/167361-
dc.description.abstractWe consider electron exchange between a metal tip and a metal electrode immersed in an aqueous solution. The tip and the substrate are modeled as jellium; the solution is treated on the Gouy-Chapman level. We construct an effective energy barrier for the tunneling electron by a superposition of its interaction with the two metals and an approximate solution of the nonlinear Poisson-Boltzmann equation. The rate of electron tunneling is calculated by solving the appropriate Schrödinger equation; the effective barrier height is then obtained by calculating the change of the tunneling current with distance. © 1995.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Electroanalytical Chemistryen_US
dc.subjectElectron Tunnellingen_US
dc.subjectMathematical Modelen_US
dc.subjectScanning Tunnelling Microscopyen_US
dc.titleA model for the effective barrier height observed with a scanning tunneling microscopeen_US
dc.typeArticleen_US
dc.identifier.emailChan, KY:hrsccky@hku.hken_US
dc.identifier.authorityChan, KY=rp00662en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/0022-0728(95)03853-9-
dc.identifier.scopuseid_2-s2.0-0001714371en_US
dc.identifier.hkuros9412-
dc.identifier.volume396en_US
dc.identifier.issue1-2en_US
dc.identifier.spage303en_US
dc.identifier.epage307en_US
dc.identifier.isiWOS:A1995TE60700038-
dc.identifier.scopusauthoridPecina, O=6601995219en_US
dc.identifier.scopusauthoridSchmickler, W=7004958833en_US
dc.identifier.scopusauthoridChan, KY=7406034142en_US
dc.identifier.scopusauthoridHenderson, DJ=7402988756en_US
dc.identifier.issnl0022-0728-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats