File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: The circumference of a graph with no K3,t-minor, II
  • Basic View
  • Metadata View
  • XML View
TitleThe circumference of a graph with no K3,t-minor, II
 
AuthorsChen, G
Yu, X
Zang, W
 
Issue Date2012
 
PublisherAcademic Press. The Journal's web site is located at http://www.elsevier.com/locate/jctb
 
CitationJournal of Combinatorial Theory Series B, 2012 [How to Cite?]
DOI: http://dx.doi.org/10.1016/j.jctb.2012.07.003
 
AbstractThe class of graphs with no K3;t-minors, t>=3, contains all planar graphs and plays an important role in graph minor theory. In 1992, Seymour and Thomas conjectured the existence of a function α(t)>0 and a constant β>0, such that every 3-connected n-vertex graph with no K3;t-minors, t>=3, contains a cycle of length at least α(t)nβ. The purpose of this paper is to con¯rm this conjecture with α(t)=(1/2)t(t-1) and β=log1729 2.
 
DescriptionPreprint link: http://hkumath.hku.hk/~imr/IMRPreprintSeries/2010/IMR2010-2.pdf
 
ISSN0095-8956
2013 Impact Factor: 0.939
 
DOIhttp://dx.doi.org/10.1016/j.jctb.2012.07.003
 
DC FieldValue
dc.contributor.authorChen, G
 
dc.contributor.authorYu, X
 
dc.contributor.authorZang, W
 
dc.date.accessioned2012-09-20T07:56:17Z
 
dc.date.available2012-09-20T07:56:17Z
 
dc.date.issued2012
 
dc.description.abstractThe class of graphs with no K3;t-minors, t>=3, contains all planar graphs and plays an important role in graph minor theory. In 1992, Seymour and Thomas conjectured the existence of a function α(t)>0 and a constant β>0, such that every 3-connected n-vertex graph with no K3;t-minors, t>=3, contains a cycle of length at least α(t)nβ. The purpose of this paper is to con¯rm this conjecture with α(t)=(1/2)t(t-1) and β=log1729 2.
 
dc.descriptionPreprint link: http://hkumath.hku.hk/~imr/IMRPreprintSeries/2010/IMR2010-2.pdf
 
dc.identifier.citationJournal of Combinatorial Theory Series B, 2012 [How to Cite?]
DOI: http://dx.doi.org/10.1016/j.jctb.2012.07.003
 
dc.identifier.doihttp://dx.doi.org/10.1016/j.jctb.2012.07.003
 
dc.identifier.hkuros205943
 
dc.identifier.issn0095-8956
2013 Impact Factor: 0.939
 
dc.identifier.urihttp://hdl.handle.net/10722/164176
 
dc.languageeng
 
dc.publisherAcademic Press. The Journal's web site is located at http://www.elsevier.com/locate/jctb
 
dc.publisher.placeUnited States
 
dc.relation.ispartofJournal of Combinatorial Theory Series B
 
dc.titleThe circumference of a graph with no K3,t-minor, II
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Chen, G</contributor.author>
<contributor.author>Yu, X</contributor.author>
<contributor.author>Zang, W</contributor.author>
<date.accessioned>2012-09-20T07:56:17Z</date.accessioned>
<date.available>2012-09-20T07:56:17Z</date.available>
<date.issued>2012</date.issued>
<identifier.citation>Journal of Combinatorial Theory Series B, 2012</identifier.citation>
<identifier.issn>0095-8956</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/164176</identifier.uri>
<description>Preprint link: http://hkumath.hku.hk/~imr/IMRPreprintSeries/2010/IMR2010-2.pdf</description>
<description.abstract>The class of graphs with no K3;t-minors, t&gt;=3, contains all planar graphs and plays an important
role in graph minor theory. In 1992, Seymour and Thomas conjectured the existence of a function
&#945;(t)&gt;0 and a constant &#946;&gt;0, such that every 3-connected n-vertex graph with no K3;t-minors, t&gt;=3,
contains a cycle of length at least &#945;(t)n&#946;. The purpose of this paper is to con&#175;rm this conjecture
with &#945;(t)=(1/2)t(t-1) and &#946;=log1729 2.</description.abstract>
<language>eng</language>
<publisher>Academic Press. The Journal&apos;s web site is located at http://www.elsevier.com/locate/jctb</publisher>
<relation.ispartof>Journal of Combinatorial Theory Series B</relation.ispartof>
<title>The circumference of a graph with no K3,t-minor, II</title>
<type>Article</type>
<identifier.doi>10.1016/j.jctb.2012.07.003</identifier.doi>
<identifier.hkuros>205943</identifier.hkuros>
<publisher.place>United States</publisher.place>
</item>