File Download
Supplementary

postgraduate thesis: Tailoring optical properties of light-emitting diodes by nanostructuring with nanospheres

TitleTailoring optical properties of light-emitting diodes by nanostructuring with nanospheres
Authors
Advisors
Advisor(s):Choi, HW
Issue Date2012
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Abstract
III-V nitride based light-emitting diodes (LEDs) have experienced rapid developments during past decade, proving their potential to substitute conventional incandescent bulbs and fluorescent lamps to fulfil energy-efficient and sustainable lighting needs. Tremendous endeavours have been made to improve the performance of LEDs, most of which focused on enhancing the internal and external quantum efficiencies. However, other optical properties of LEDs remain to be explored for a more flexible way of using LEDs in various applications. Therefore, this thesis proposes two nanostructuring strategies through the use of nanospheres to tailor the optical properties of LEDs. The nanostructured LEDs are demonstrated enable light emission with reduced divergence, or becomes polarized. The monolithic modifications are free of external optics and thus eliminate light loss, meanwhile providing manipulability of optical emission from LEDs. Firstly, close-packed indium-tin-oxide (ITO) micron-lenses with dimension of the order of wavelength have been integrated onto InGaN LEDs aiming at reducing the emission divergence. The sub-micron lens arrays are patterned by nanosphere lithography with silica nanosphere serving as an etch mask on ITO layer, leaving the semiconductor layer damage-free. An enhancement of up to 63.5% on optical output power from the lensed LED has been observed. The LED with 500 nm lenses exhibits a 26.8° reduction in emission divergence (full width at half maximum) compared with the bare LED. Three-dimensional finite-difference time-domain simulations performed for light extraction and emission characteristics is found to be consistent with the observed results. Secondly, polarization behavior of light emitted from InGaN LEDs propagating through a self-assembled polystyrene nanosphere opal film has been studied. Angular-resolved optical transmission of transverse electric (TE) and transverse magnetic (TM) polarized light has been measured. An integrated p/s ratio of 2.16 is observed at a detection angle of 70°, attributed to the suppression of TE mode at particular frequencies by the three-dimensional photonic crystal. Polarization is found to depend strongly on both the photonic bandgap of the opal and the angle of incidence. Theoretical calculations by transfer matrix method yield results consistent with the experimental data.
DegreeMaster of Philosophy
SubjectLight emitting diodes.
Nanostructured materials.
Dept/ProgramElectrical and Electronic Engineering

 

DC FieldValueLanguage
dc.contributor.advisorChoi, HW-
dc.contributor.authorZhang, Qian-
dc.contributor.author张倩-
dc.date.issued2012-
dc.description.abstractIII-V nitride based light-emitting diodes (LEDs) have experienced rapid developments during past decade, proving their potential to substitute conventional incandescent bulbs and fluorescent lamps to fulfil energy-efficient and sustainable lighting needs. Tremendous endeavours have been made to improve the performance of LEDs, most of which focused on enhancing the internal and external quantum efficiencies. However, other optical properties of LEDs remain to be explored for a more flexible way of using LEDs in various applications. Therefore, this thesis proposes two nanostructuring strategies through the use of nanospheres to tailor the optical properties of LEDs. The nanostructured LEDs are demonstrated enable light emission with reduced divergence, or becomes polarized. The monolithic modifications are free of external optics and thus eliminate light loss, meanwhile providing manipulability of optical emission from LEDs. Firstly, close-packed indium-tin-oxide (ITO) micron-lenses with dimension of the order of wavelength have been integrated onto InGaN LEDs aiming at reducing the emission divergence. The sub-micron lens arrays are patterned by nanosphere lithography with silica nanosphere serving as an etch mask on ITO layer, leaving the semiconductor layer damage-free. An enhancement of up to 63.5% on optical output power from the lensed LED has been observed. The LED with 500 nm lenses exhibits a 26.8° reduction in emission divergence (full width at half maximum) compared with the bare LED. Three-dimensional finite-difference time-domain simulations performed for light extraction and emission characteristics is found to be consistent with the observed results. Secondly, polarization behavior of light emitted from InGaN LEDs propagating through a self-assembled polystyrene nanosphere opal film has been studied. Angular-resolved optical transmission of transverse electric (TE) and transverse magnetic (TM) polarized light has been measured. An integrated p/s ratio of 2.16 is observed at a detection angle of 70°, attributed to the suppression of TE mode at particular frequencies by the three-dimensional photonic crystal. Polarization is found to depend strongly on both the photonic bandgap of the opal and the angle of incidence. Theoretical calculations by transfer matrix method yield results consistent with the experimental data.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.source.urihttp://hub.hku.hk/bib/B4807990X-
dc.subject.lcshLight emitting diodes.-
dc.subject.lcshNanostructured materials.-
dc.titleTailoring optical properties of light-emitting diodes by nanostructuring with nanospheres-
dc.typePG_Thesis-
dc.identifier.hkulb4807990-
dc.description.thesisnameMaster of Philosophy-
dc.description.thesislevelMaster-
dc.description.thesisdisciplineElectrical and Electronic Engineering-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b4807990-
dc.date.hkucongregation2012-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats