File Download
Supplementary

postgraduate thesis: Ultrashort time-to-echo MRI of the cartilaginous endplate and relationship to disc degeneration and Schmorl's nodes, andretrospective study of paediatric spines and the neurocentralsynchondrosis

TitleUltrashort time-to-echo MRI of the cartilaginous endplate and relationship to disc degeneration and Schmorl's nodes, andretrospective study of paediatric spines and the neurocentralsynchondrosis
Authors
Advisors
Issue Date2011
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Abstract
Background: An association between cartilaginous endplate (CEP) defects and intervertebral disc (IVD) degeneration has been previously suggested in animal and cadaveric studies. CEP defects may also be involved in Schmorl’s nodes (SN). There have been no previous reports in the literature that describe the use of ultrashort time-to-echo (UTE) MRI to assess the CEP in humans in vivo. In chapter 5 of this thesis, a retrospective study of paediatric spines and the neurocentral synchondrosis (NCS) was singled out to report the incidence of NCS and to raise the hypothesis of NCS as a precursor of SN. Purpose: To assess the feasibility of detecting CEP defects in live humans using UTE MRI, and to assess their relationship with IVD degeneration and SN. Subjects and Methods: A total number of 22 subjects underwent T2-weighted (T2W) and UTE MRI to assess for the presence and severity of IVD degeneration, the presence of SN and for the presence of CEP defects. SN and IVD degeneration were confirmed by assessing T2W images and IVD degeneration was graded according to the Schneiderman classification. CEP defects were defined as discontinuity of high signal over 4 consecutive images and were independently assessed by two raters. Results: Analyses of CEP defects between IVD degeneration and SN were performed separately. For the study of CEP defects and IVD degeneration, subjects with SN were excluded. 37 out of 108 (34.3%) CEPs had defects, which mainly occurred at T12/L1, L1/L2 and L4/L5 (p=0.008). Inter-rater reliability was substantial (Kappa statistic= 0.67, p<0.001). Multivariate logistic regression revealed that lower BMI (p=0.009) and younger (p=0.034) individuals had a decreased likelihood of having CEP defects. A statistically significant association was found to exist between the presence of cartilaginous endplate defects and intervertebral disc degeneration (p=0.036). Degenerated discs with CEP defects were found in L4/5 and L5/S1, while degenerated discs with no CEP defects were found throughout the whole lumbar region. Mean degeneration scores of L4/5 and L5/S1 levels with CEP defects were higher than that of L4/5 and L5/S1 levels without. For the study of CEP defects and SN, with all 22 subjects assessed, 125 out of 264 (47.3%) CEPs had defects. 40 SN were found, and among those, 35 SN had CEP defects (87.5%). 125 CEPs had the presence of CEP defects; among them, a large number of CEP defects did not have SN underneath (92 out of 125, 73.2%). Conclusion: The studies demonstrate the feasibility of using UTE MRI in live humans to assess the integrity of the CEP. Longitudinal studies may reveal the diagnosis of CEP defects to be clinically beneficial for assessment of IVD degeneration and SN.
DegreeMaster of Philosophy
SubjectIntervertebral disk - Diseases - Magnetic resonance imaging.
Dept/ProgramDiagnostic Radiology

 

DC FieldValueLanguage
dc.contributor.advisorAnthony, M-
dc.contributor.advisorKhong, PL-
dc.contributor.advisorKim, M-
dc.contributor.authorLaw, Tsz-kwun.-
dc.contributor.author羅子冠.-
dc.date.issued2011-
dc.description.abstractBackground: An association between cartilaginous endplate (CEP) defects and intervertebral disc (IVD) degeneration has been previously suggested in animal and cadaveric studies. CEP defects may also be involved in Schmorl’s nodes (SN). There have been no previous reports in the literature that describe the use of ultrashort time-to-echo (UTE) MRI to assess the CEP in humans in vivo. In chapter 5 of this thesis, a retrospective study of paediatric spines and the neurocentral synchondrosis (NCS) was singled out to report the incidence of NCS and to raise the hypothesis of NCS as a precursor of SN. Purpose: To assess the feasibility of detecting CEP defects in live humans using UTE MRI, and to assess their relationship with IVD degeneration and SN. Subjects and Methods: A total number of 22 subjects underwent T2-weighted (T2W) and UTE MRI to assess for the presence and severity of IVD degeneration, the presence of SN and for the presence of CEP defects. SN and IVD degeneration were confirmed by assessing T2W images and IVD degeneration was graded according to the Schneiderman classification. CEP defects were defined as discontinuity of high signal over 4 consecutive images and were independently assessed by two raters. Results: Analyses of CEP defects between IVD degeneration and SN were performed separately. For the study of CEP defects and IVD degeneration, subjects with SN were excluded. 37 out of 108 (34.3%) CEPs had defects, which mainly occurred at T12/L1, L1/L2 and L4/L5 (p=0.008). Inter-rater reliability was substantial (Kappa statistic= 0.67, p<0.001). Multivariate logistic regression revealed that lower BMI (p=0.009) and younger (p=0.034) individuals had a decreased likelihood of having CEP defects. A statistically significant association was found to exist between the presence of cartilaginous endplate defects and intervertebral disc degeneration (p=0.036). Degenerated discs with CEP defects were found in L4/5 and L5/S1, while degenerated discs with no CEP defects were found throughout the whole lumbar region. Mean degeneration scores of L4/5 and L5/S1 levels with CEP defects were higher than that of L4/5 and L5/S1 levels without. For the study of CEP defects and SN, with all 22 subjects assessed, 125 out of 264 (47.3%) CEPs had defects. 40 SN were found, and among those, 35 SN had CEP defects (87.5%). 125 CEPs had the presence of CEP defects; among them, a large number of CEP defects did not have SN underneath (92 out of 125, 73.2%). Conclusion: The studies demonstrate the feasibility of using UTE MRI in live humans to assess the integrity of the CEP. Longitudinal studies may reveal the diagnosis of CEP defects to be clinically beneficial for assessment of IVD degeneration and SN.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.source.urihttp://hub.hku.hk/bib/B47869987-
dc.subject.lcshIntervertebral disk - Diseases - Magnetic resonance imaging.-
dc.titleUltrashort time-to-echo MRI of the cartilaginous endplate and relationship to disc degeneration and Schmorl's nodes, andretrospective study of paediatric spines and the neurocentralsynchondrosis-
dc.typePG_Thesis-
dc.identifier.hkulb4786998-
dc.description.thesisnameMaster of Philosophy-
dc.description.thesislevelmaster's-
dc.description.thesisdisciplineDiagnostic Radiology-
dc.description.naturepublished_or_final_version-
dc.date.hkucongregation2012-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats