File Download
 
 
Supplementary

Postgraduate Thesis: Deep level transient spectroscopic study of intrinsic defects in particle-irradiated ZnO single crystal materials
  • Basic View
  • Metadata View
  • XML View
TitleDeep level transient spectroscopic study of intrinsic defects in particle-irradiated ZnO single crystal materials
 
AuthorsLu, Xiaohong
吕小红
 
Issue Date2012
 
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
 
AbstractZinc oxide (ZnO), as a Ⅱ-Ⅵ compound semiconductor with a wide direct band gap, has attracted great attention from the worldwide researchers for its potential application in the fields of spintronics and optoelectronics. At present research about the defects in ZnO and ZnO-based materials is still far from complete. The deep level defects in melted grown ZnO single crystal induced by helium ions implantation and electron irradiation, as well as their thermal evolution, were studied in this research using the technique of deep level transient spectroscopy (DLTS) and photoluminescence (PL). DLTS results indicated that, besides E3 (????~0.28 ????) trap which was widely observed in the as-grown ZnO samples, the deep level with ????~0.92 ???? was also indentified in the helium-implanted ZnO samples, which was introduced by the ion implantation and tentatively assigned to be the oxygen vacancy (VO). This deep level was removed after 350 oC annealing in argon gas. Annealing at 350 oC also brought along a new deep level with ????~0.66???? into helium-implanted samples which could be annealed out by 650 oC annealing in argon gas. The electron irradiation induced a deep level with ????~0.59 ???? into ZnO, which was probably associated with the singly charged state of VO. This deep level also tended to be removed at 350 oC annealing in argon gas. The PL spectra revealed that both helium implantation and electron irradiation could improve the bound-exciton peak. Helium implantation also introduced defects emission at 1.90 eV , which was the red luminescence band, into the ZnO single crystal materials. This red luminescence band peak might be associated with DAP recombination. Electron irradiation might restrain the green luminescence in ZnO single crystal. The fine structures could disappear as the measurement temperature increased, leaving the green luminescence band only.
 
DegreeDoctor of Philosophy
 
SubjectZinc oxide - Defects.
Deep level transient spectroscopy.
 
Dept/ProgramPhysics
 
DC FieldValue
dc.contributor.authorLu, Xiaohong
 
dc.contributor.author吕小红
 
dc.date.hkucongregation2012
 
dc.date.issued2012
 
dc.description.abstractZinc oxide (ZnO), as a Ⅱ-Ⅵ compound semiconductor with a wide direct band gap, has attracted great attention from the worldwide researchers for its potential application in the fields of spintronics and optoelectronics. At present research about the defects in ZnO and ZnO-based materials is still far from complete. The deep level defects in melted grown ZnO single crystal induced by helium ions implantation and electron irradiation, as well as their thermal evolution, were studied in this research using the technique of deep level transient spectroscopy (DLTS) and photoluminescence (PL). DLTS results indicated that, besides E3 (????~0.28 ????) trap which was widely observed in the as-grown ZnO samples, the deep level with ????~0.92 ???? was also indentified in the helium-implanted ZnO samples, which was introduced by the ion implantation and tentatively assigned to be the oxygen vacancy (VO). This deep level was removed after 350 oC annealing in argon gas. Annealing at 350 oC also brought along a new deep level with ????~0.66???? into helium-implanted samples which could be annealed out by 650 oC annealing in argon gas. The electron irradiation induced a deep level with ????~0.59 ???? into ZnO, which was probably associated with the singly charged state of VO. This deep level also tended to be removed at 350 oC annealing in argon gas. The PL spectra revealed that both helium implantation and electron irradiation could improve the bound-exciton peak. Helium implantation also introduced defects emission at 1.90 eV , which was the red luminescence band, into the ZnO single crystal materials. This red luminescence band peak might be associated with DAP recombination. Electron irradiation might restrain the green luminescence in ZnO single crystal. The fine structures could disappear as the measurement temperature increased, leaving the green luminescence band only.
 
dc.description.naturepublished_or_final_version
 
dc.description.thesisdisciplinePhysics
 
dc.description.thesisleveldoctoral
 
dc.description.thesisnameDoctor of Philosophy
 
dc.identifier.hkulb4786991
 
dc.languageeng
 
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)
 
dc.relation.ispartofHKU Theses Online (HKUTO)
 
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.
 
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License
 
dc.source.urihttp://hub.hku.hk/bib/B47869914
 
dc.subject.lcshZinc oxide - Defects.
 
dc.subject.lcshDeep level transient spectroscopy.
 
dc.titleDeep level transient spectroscopic study of intrinsic defects in particle-irradiated ZnO single crystal materials
 
dc.typePG_Thesis
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Lu, Xiaohong</contributor.author>
<contributor.author>&#21525;&#23567;&#32418;</contributor.author>
<date.issued>2012</date.issued>
<description.abstract>&#65279;Zinc oxide (ZnO), as a &#8545;-&#8549; compound semiconductor with a wide direct band gap, has attracted great attention from the worldwide researchers for its potential application in the fields of spintronics and optoelectronics. At present research about the defects in ZnO and ZnO-based materials is still far from complete. The deep level defects in melted grown ZnO single crystal induced by helium ions implantation and electron irradiation, as well as their thermal evolution, were studied in this research using the technique of deep level transient spectroscopy (DLTS) and photoluminescence (PL). 

DLTS results indicated that, besides E3 (????~0.28 ????) trap which was widely observed in the as-grown ZnO samples, the deep level with ????~0.92 ???? was also indentified in the helium-implanted ZnO samples, which was introduced by the ion implantation and tentatively assigned to be the oxygen vacancy (VO). This deep level was removed after 350 oC annealing in argon gas. Annealing at 350 oC also brought along a new deep level with ????~0.66???? into helium-implanted samples which could be annealed out by 650 oC annealing in argon gas. The electron irradiation induced a deep level with ????~0.59 ???? into ZnO, which was probably associated with the singly charged state of VO. This deep level also tended to be removed at 350 oC annealing in argon gas. The PL spectra revealed that both helium implantation and electron irradiation could improve the bound-exciton peak. Helium implantation also introduced defects emission at 1.90 eV , which was the red luminescence band, into the ZnO single crystal materials. This red luminescence band peak might be associated with DAP recombination. Electron irradiation might restrain the green luminescence in ZnO single crystal. The fine structures could disappear as the measurement temperature increased, leaving the green luminescence band only.</description.abstract>
<language>eng</language>
<publisher>The University of Hong Kong (Pokfulam, Hong Kong)</publisher>
<relation.ispartof>HKU Theses Online (HKUTO)</relation.ispartof>
<rights>The author retains all proprietary rights, (such as patent rights) and the right to use in future works.</rights>
<rights>Creative Commons: Attribution 3.0 Hong Kong License</rights>
<source.uri>http://hub.hku.hk/bib/B47869914</source.uri>
<subject.lcsh>Zinc oxide - Defects.</subject.lcsh>
<subject.lcsh>Deep level transient spectroscopy.</subject.lcsh>
<title>Deep level transient spectroscopic study of intrinsic defects in particle-irradiated ZnO single crystal materials</title>
<type>PG_Thesis</type>
<identifier.hkul>b4786991</identifier.hkul>
<description.thesisname>Doctor of Philosophy</description.thesisname>
<description.thesislevel>doctoral</description.thesislevel>
<description.thesisdiscipline>Physics</description.thesisdiscipline>
<description.nature>published_or_final_version</description.nature>
<date.hkucongregation>2012</date.hkucongregation>
<bitstream.url>http://hub.hku.hk/bitstream/10722/161551/1/FullText.pdf</bitstream.url>
</item>