File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Conference Paper: New criteria of reachable set estimation for time delay systems subject to polytopic uncertainties
  • Basic View
  • Metadata View
  • XML View
TitleNew criteria of reachable set estimation for time delay systems subject to polytopic uncertainties
 
AuthorsZuo, Z2
Chen, Y2
Wang, Y2
Chen, MZ1
 
KeywordsEllipsoidal bound
Free-weighting matrices
Jensen's inequality
Lyapunov functionals
Lyapunov-krasovskii functionals
 
Issue Date2012
 
PublisherInternational Federation of Automatic Control.
 
CitationThe 7th IFAC Symposium on Robust Control Design, Denmark, 20-22 June 2012. In IFAC Proceedings, 2012, v. 7 pt. 1, p. 231-235 [How to Cite?]
DOI: http://dx.doi.org/10.3182/20120620-3-DK-2025.00053
 
AbstractThe problem of reachable set estimation for linear systems subject to both time delay and polytopic uncertainties is considered in this paper. Our aim is to find a set as small as possible to bound the states starting from the origin by inputs with peak values. The Lyapunov-Krasovskii functional together with free-weighting matrix technique are proposed to derive some sufficient conditions for the existence of an ellipsoidal bound to estimate the states. This method eliminates the conservatism generated by Jensen's inequality and obtains a much tighter reachable set bound. In addition, the number of variables to be determined is smaller than the previous result based on the maximal Lyapunov functional. Finally, an example illustrates the merits of our proposed results. © 2012 IFAC.
 
ISBN978-3-902823-03-8
 
ISSN1474-6670
2013 SCImago Journal Rankings: 0.200
 
DOIhttp://dx.doi.org/10.3182/20120620-3-DK-2025.00053
 
DC FieldValue
dc.contributor.authorZuo, Z
 
dc.contributor.authorChen, Y
 
dc.contributor.authorWang, Y
 
dc.contributor.authorChen, MZ
 
dc.date.accessioned2012-08-16T06:07:35Z
 
dc.date.available2012-08-16T06:07:35Z
 
dc.date.issued2012
 
dc.description.abstractThe problem of reachable set estimation for linear systems subject to both time delay and polytopic uncertainties is considered in this paper. Our aim is to find a set as small as possible to bound the states starting from the origin by inputs with peak values. The Lyapunov-Krasovskii functional together with free-weighting matrix technique are proposed to derive some sufficient conditions for the existence of an ellipsoidal bound to estimate the states. This method eliminates the conservatism generated by Jensen's inequality and obtains a much tighter reachable set bound. In addition, the number of variables to be determined is smaller than the previous result based on the maximal Lyapunov functional. Finally, an example illustrates the merits of our proposed results. © 2012 IFAC.
 
dc.description.naturelink_to_OA_fulltext
 
dc.identifier.citationThe 7th IFAC Symposium on Robust Control Design, Denmark, 20-22 June 2012. In IFAC Proceedings, 2012, v. 7 pt. 1, p. 231-235 [How to Cite?]
DOI: http://dx.doi.org/10.3182/20120620-3-DK-2025.00053
 
dc.identifier.doihttp://dx.doi.org/10.3182/20120620-3-DK-2025.00053
 
dc.identifier.epage235
 
dc.identifier.hkuros205413
 
dc.identifier.isbn978-3-902823-03-8
 
dc.identifier.issn1474-6670
2013 SCImago Journal Rankings: 0.200
 
dc.identifier.issuept. 1
 
dc.identifier.scopuseid_2-s2.0-84866122272
 
dc.identifier.spage231
 
dc.identifier.urihttp://hdl.handle.net/10722/160291
 
dc.identifier.volume7
 
dc.languageeng
 
dc.publisherInternational Federation of Automatic Control.
 
dc.relation.ispartofIFAC Proceedings
 
dc.subjectEllipsoidal bound
 
dc.subjectFree-weighting matrices
 
dc.subjectJensen's inequality
 
dc.subjectLyapunov functionals
 
dc.subjectLyapunov-krasovskii functionals
 
dc.titleNew criteria of reachable set estimation for time delay systems subject to polytopic uncertainties
 
dc.typeConference_Paper
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Zuo, Z</contributor.author>
<contributor.author>Chen, Y</contributor.author>
<contributor.author>Wang, Y</contributor.author>
<contributor.author>Chen, MZ</contributor.author>
<date.accessioned>2012-08-16T06:07:35Z</date.accessioned>
<date.available>2012-08-16T06:07:35Z</date.available>
<date.issued>2012</date.issued>
<identifier.citation>The 7th IFAC Symposium on Robust Control Design, Denmark, 20-22 June 2012. In IFAC Proceedings, 2012, v. 7 pt. 1, p. 231-235</identifier.citation>
<identifier.isbn>978-3-902823-03-8</identifier.isbn>
<identifier.issn>1474-6670</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/160291</identifier.uri>
<description.abstract>The problem of reachable set estimation for linear systems subject to both time delay and polytopic uncertainties is considered in this paper. Our aim is to find a set as small as possible to bound the states starting from the origin by inputs with peak values. The Lyapunov-Krasovskii functional together with free-weighting matrix technique are proposed to derive some sufficient conditions for the existence of an ellipsoidal bound to estimate the states. This method eliminates the conservatism generated by Jensen&apos;s inequality and obtains a much tighter reachable set bound. In addition, the number of variables to be determined is smaller than the previous result based on the maximal Lyapunov functional. Finally, an example illustrates the merits of our proposed results. &#169; 2012 IFAC.</description.abstract>
<language>eng</language>
<publisher>International Federation of Automatic Control.</publisher>
<relation.ispartof>IFAC Proceedings</relation.ispartof>
<subject>Ellipsoidal bound</subject>
<subject>Free-weighting matrices</subject>
<subject>Jensen&apos;s inequality</subject>
<subject>Lyapunov functionals</subject>
<subject>Lyapunov-krasovskii functionals</subject>
<title>New criteria of reachable set estimation for time delay systems subject to polytopic uncertainties</title>
<type>Conference_Paper</type>
<description.nature>link_to_OA_fulltext</description.nature>
<identifier.doi>10.3182/20120620-3-DK-2025.00053</identifier.doi>
<identifier.scopus>eid_2-s2.0-84866122272</identifier.scopus>
<identifier.hkuros>205413</identifier.hkuros>
<identifier.volume>7</identifier.volume>
<identifier.issue>pt. 1</identifier.issue>
<identifier.spage>231</identifier.spage>
<identifier.epage>235</identifier.epage>
<bitstream.url>http://hub.hku.hk/bitstream/10722/160291/1/re01.htm</bitstream.url>
</item>
Author Affiliations
  1. The University of Hong Kong
  2. Tianjin University