File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Propagating wave patterns in a derivative nonlinear Schrodinger system with quintic nonlinearity

TitlePropagating wave patterns in a derivative nonlinear Schrodinger system with quintic nonlinearity
Authors
KeywordsDerivative nonlinear schrödinger equation
Quintic nonlinearity
Issue Date2012
PublisherPhysical Society of Japan. The Journal's web site is located at http://www.ipap.jp/jpsj/index.htm
Citation
Journal of the Physical Society of Japan, 2012, v. 81 n. 9, article no. 094005, p. 1-8 How to Cite?
AbstractExact expressions are obtained for a diversity of propagating patterns for a derivative nonlinear Schrödinger equation with the quintic nonlinearity. These patterns include bright pulses, fronts and dark solitons. The evolution of the wave envelope is determined via a pair of integrals of motion, and reduction is achieved to Jacobi elliptic cn and dn function representations. Numerical simulations are performed to establish the existence of parameter ranges for stability. The derivative quintic nonlinear Schrödinger model equations investigated here are relevant in the analysis of strong optical signals propagating in spatial or temporal waveguides. © 2012 The Physical Society of Japan.
Persistent Identifierhttp://hdl.handle.net/10722/159584
ISSN
2023 Impact Factor: 1.5
2023 SCImago Journal Rankings: 0.612
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorRogers, Cen_US
dc.contributor.authorMalomed, Ben_US
dc.contributor.authorLi, JHen_US
dc.contributor.authorChow, KWen_US
dc.date.accessioned2012-08-16T05:52:45Z-
dc.date.available2012-08-16T05:52:45Z-
dc.date.issued2012en_US
dc.identifier.citationJournal of the Physical Society of Japan, 2012, v. 81 n. 9, article no. 094005, p. 1-8-
dc.identifier.issn0031-9015-
dc.identifier.urihttp://hdl.handle.net/10722/159584-
dc.description.abstractExact expressions are obtained for a diversity of propagating patterns for a derivative nonlinear Schrödinger equation with the quintic nonlinearity. These patterns include bright pulses, fronts and dark solitons. The evolution of the wave envelope is determined via a pair of integrals of motion, and reduction is achieved to Jacobi elliptic cn and dn function representations. Numerical simulations are performed to establish the existence of parameter ranges for stability. The derivative quintic nonlinear Schrödinger model equations investigated here are relevant in the analysis of strong optical signals propagating in spatial or temporal waveguides. © 2012 The Physical Society of Japan.-
dc.languageengen_US
dc.publisherPhysical Society of Japan. The Journal's web site is located at http://www.ipap.jp/jpsj/index.htm-
dc.relation.ispartofJournal of the Physical Society of Japanen_US
dc.rights©2012 The Physical Society of Japan. The final published version of this article is available online at https://doi.org/10.1143/JPSJ.81.094005-
dc.subjectDerivative nonlinear schrödinger equation-
dc.subjectQuintic nonlinearity-
dc.titlePropagating wave patterns in a derivative nonlinear Schrodinger system with quintic nonlinearityen_US
dc.typeArticleen_US
dc.identifier.emailChow, KW: kwchow@hku.hken_US
dc.identifier.authorityChow, KW=rp00112en_US
dc.description.naturepostprint-
dc.identifier.doi10.1143/JPSJ.81.094005-
dc.identifier.scopuseid_2-s2.0-84866359059-
dc.identifier.hkuros205295en_US
dc.identifier.hkuros215381-
dc.identifier.volume81-
dc.identifier.issue9-
dc.identifier.spagearticle no. 094005, p. 1-
dc.identifier.epagearticle no. 094005, p. 8-
dc.identifier.eissn1347-4073-
dc.identifier.isiWOS:000308305000015-
dc.publisher.placeJapan-
dc.customcontrol.immutablejt 130419-
dc.identifier.issnl0031-9015-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats