File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Unraveling the mechanism of the photodeprotection reaction of 8-bromo- and 8-chloro-7-hydroxyquinoline caged acetates
  • Basic View
  • Metadata View
  • XML View
TitleUnraveling the mechanism of the photodeprotection reaction of 8-bromo- and 8-chloro-7-hydroxyquinoline caged acetates
 
AuthorsMa, J2
Rea, AC1
An, H2
Ma, C2
Guan, X2
Li, MD2
Su, T2
Yeung, CS2
Harris, KT1
Zhu, Y1
Nganga, JL1
Fedoryak, OD1
Dore, TM1
Phillips, DL2
 
Keywordscage compounds
photodeprotection
proton transfer
quinoline
time-resolved spectroscopy
 
Issue Date2012
 
PublisherWiley - V C H Verlag GmbH & Co KGaA. The Journal's web site is located at http://www.wiley-vch.de/home/chemistry
 
CitationChemistry - A European Journal, 2012, v. 18 n. 22, p. 6854-6865 [How to Cite?]
DOI: http://dx.doi.org/10.1002/chem.201200366
 
AbstractPhotoremovable protecting groups (PPGs) when conjugated to biological effectors forming "caged compounds" are a powerful means to regulate the action of physiologically active messengers in vivo through 1-photon excitation (1PE) and 2-photon excitation (2PE). Understanding the photodeprotection mechanism is important for their physiological use. We compared the quantum efficiencies and product outcomes in different solvent and pH conditions for the photolysis reactions of (8-chloro-7-hydroxyquinolin-2-yl) methyl acetate (CHQ-OAc) and (8-bromo-7-hydroxyquinolin-2-yl)methyl acetate (BHQ-OAc), representatives of the quinoline class of phototriggers for biological use, and conducted nanosecond time-resolved spectroscopic studies using transient emission (ns-EM), transient absorption (ns-TA), transient resonance Raman (ns-TR 2), and time-resolved resonance Raman (ns-TR 3) spectroscopies. The results indicate differences in the photochemical mechanisms and product outcomes, and reveal that the triplet excited state is most likely on the pathway to the product and that dehalogenation competes with release of acetate from BHQ-OAc, but not CHQ-OAc. A high fluorescence quantum yield and a more efficient excited-state proton transfer (ESPT) in CHQ-OAc compared to BHQ-OAc explain the lower quantum efficiency of CHQ-OAc relative to BHQ-OAc. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
 
ISSN0947-6539
2013 Impact Factor: 5.696
 
DOIhttp://dx.doi.org/10.1002/chem.201200366
 
PubMed Central IDPMC3531613
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorMa, J
 
dc.contributor.authorRea, AC
 
dc.contributor.authorAn, H
 
dc.contributor.authorMa, C
 
dc.contributor.authorGuan, X
 
dc.contributor.authorLi, MD
 
dc.contributor.authorSu, T
 
dc.contributor.authorYeung, CS
 
dc.contributor.authorHarris, KT
 
dc.contributor.authorZhu, Y
 
dc.contributor.authorNganga, JL
 
dc.contributor.authorFedoryak, OD
 
dc.contributor.authorDore, TM
 
dc.contributor.authorPhillips, DL
 
dc.date.accessioned2012-08-16T05:48:30Z
 
dc.date.available2012-08-16T05:48:30Z
 
dc.date.issued2012
 
dc.description.abstractPhotoremovable protecting groups (PPGs) when conjugated to biological effectors forming "caged compounds" are a powerful means to regulate the action of physiologically active messengers in vivo through 1-photon excitation (1PE) and 2-photon excitation (2PE). Understanding the photodeprotection mechanism is important for their physiological use. We compared the quantum efficiencies and product outcomes in different solvent and pH conditions for the photolysis reactions of (8-chloro-7-hydroxyquinolin-2-yl) methyl acetate (CHQ-OAc) and (8-bromo-7-hydroxyquinolin-2-yl)methyl acetate (BHQ-OAc), representatives of the quinoline class of phototriggers for biological use, and conducted nanosecond time-resolved spectroscopic studies using transient emission (ns-EM), transient absorption (ns-TA), transient resonance Raman (ns-TR 2), and time-resolved resonance Raman (ns-TR 3) spectroscopies. The results indicate differences in the photochemical mechanisms and product outcomes, and reveal that the triplet excited state is most likely on the pathway to the product and that dehalogenation competes with release of acetate from BHQ-OAc, but not CHQ-OAc. A high fluorescence quantum yield and a more efficient excited-state proton transfer (ESPT) in CHQ-OAc compared to BHQ-OAc explain the lower quantum efficiency of CHQ-OAc relative to BHQ-OAc. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
 
dc.description.naturelink_to_OA_fulltext
 
dc.identifier.citationChemistry - A European Journal, 2012, v. 18 n. 22, p. 6854-6865 [How to Cite?]
DOI: http://dx.doi.org/10.1002/chem.201200366
 
dc.identifier.doihttp://dx.doi.org/10.1002/chem.201200366
 
dc.identifier.eissn1521-3765
 
dc.identifier.epage6865
 
dc.identifier.hkuros203418
 
dc.identifier.issn0947-6539
2013 Impact Factor: 5.696
 
dc.identifier.issue22
 
dc.identifier.pmcidPMC3531613
 
dc.identifier.pmid22511356
 
dc.identifier.scopuseid_2-s2.0-84861558058
 
dc.identifier.spage6854
 
dc.identifier.urihttp://hdl.handle.net/10722/159300
 
dc.identifier.volume18
 
dc.languageeng
 
dc.publisherWiley - V C H Verlag GmbH & Co KGaA. The Journal's web site is located at http://www.wiley-vch.de/home/chemistry
 
dc.publisher.placeGermany
 
dc.relation.ispartofChemistry - A European Journal
 
dc.relation.referencesReferences in Scopus
 
dc.subjectcage compounds
 
dc.subjectphotodeprotection
 
dc.subjectproton transfer
 
dc.subjectquinoline
 
dc.subjecttime-resolved spectroscopy
 
dc.titleUnraveling the mechanism of the photodeprotection reaction of 8-bromo- and 8-chloro-7-hydroxyquinoline caged acetates
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Ma, J</contributor.author>
<contributor.author>Rea, AC</contributor.author>
<contributor.author>An, H</contributor.author>
<contributor.author>Ma, C</contributor.author>
<contributor.author>Guan, X</contributor.author>
<contributor.author>Li, MD</contributor.author>
<contributor.author>Su, T</contributor.author>
<contributor.author>Yeung, CS</contributor.author>
<contributor.author>Harris, KT</contributor.author>
<contributor.author>Zhu, Y</contributor.author>
<contributor.author>Nganga, JL</contributor.author>
<contributor.author>Fedoryak, OD</contributor.author>
<contributor.author>Dore, TM</contributor.author>
<contributor.author>Phillips, DL</contributor.author>
<date.accessioned>2012-08-16T05:48:30Z</date.accessioned>
<date.available>2012-08-16T05:48:30Z</date.available>
<date.issued>2012</date.issued>
<identifier.citation>Chemistry - A European Journal, 2012, v. 18 n. 22, p. 6854-6865</identifier.citation>
<identifier.issn>0947-6539</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/159300</identifier.uri>
<description.abstract>Photoremovable protecting groups (PPGs) when conjugated to biological effectors forming &quot;caged compounds&quot; are a powerful means to regulate the action of physiologically active messengers in vivo through 1-photon excitation (1PE) and 2-photon excitation (2PE). Understanding the photodeprotection mechanism is important for their physiological use. We compared the quantum efficiencies and product outcomes in different solvent and pH conditions for the photolysis reactions of (8-chloro-7-hydroxyquinolin-2-yl) methyl acetate (CHQ-OAc) and (8-bromo-7-hydroxyquinolin-2-yl)methyl acetate (BHQ-OAc), representatives of the quinoline class of phototriggers for biological use, and conducted nanosecond time-resolved spectroscopic studies using transient emission (ns-EM), transient absorption (ns-TA), transient resonance Raman (ns-TR 2), and time-resolved resonance Raman (ns-TR 3) spectroscopies. The results indicate differences in the photochemical mechanisms and product outcomes, and reveal that the triplet excited state is most likely on the pathway to the product and that dehalogenation competes with release of acetate from BHQ-OAc, but not CHQ-OAc. A high fluorescence quantum yield and a more efficient excited-state proton transfer (ESPT) in CHQ-OAc compared to BHQ-OAc explain the lower quantum efficiency of CHQ-OAc relative to BHQ-OAc. Copyright &#169; 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</description.abstract>
<language>eng</language>
<publisher>Wiley - V C H Verlag GmbH &amp; Co KGaA. The Journal&apos;s web site is located at http://www.wiley-vch.de/home/chemistry</publisher>
<relation.ispartof>Chemistry - A European Journal</relation.ispartof>
<subject>cage compounds</subject>
<subject>photodeprotection</subject>
<subject>proton transfer</subject>
<subject>quinoline</subject>
<subject>time-resolved spectroscopy</subject>
<title>Unraveling the mechanism of the photodeprotection reaction of 8-bromo- and 8-chloro-7-hydroxyquinoline caged acetates</title>
<type>Article</type>
<description.nature>link_to_OA_fulltext</description.nature>
<identifier.doi>10.1002/chem.201200366</identifier.doi>
<identifier.pmid>22511356</identifier.pmid>
<identifier.pmcid>PMC3531613</identifier.pmcid>
<identifier.scopus>eid_2-s2.0-84861558058</identifier.scopus>
<identifier.hkuros>203418</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-84861558058&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>18</identifier.volume>
<identifier.issue>22</identifier.issue>
<identifier.spage>6854</identifier.spage>
<identifier.epage>6865</identifier.epage>
<identifier.eissn>1521-3765</identifier.eissn>
<publisher.place>Germany</publisher.place>
<bitstream.url>http://hub.hku.hk/bitstream/10722/159300/1/re01.htm</bitstream.url>
</item>
Author Affiliations
  1. The University of Georgia
  2. The University of Hong Kong