File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Doubly periodic and multiple pole solutions of the sinh-Poisson equation: Application of reciprocal transformations in subsonic gas dynamics

TitleDoubly periodic and multiple pole solutions of the sinh-Poisson equation: Application of reciprocal transformations in subsonic gas dynamics
Authors
KeywordsReciprocal Transformations
Sinh-Poisson Equation
Subsonic Gas Dynamics
Issue Date2006
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/cam
Citation
Journal Of Computational And Applied Mathematics, 2006, v. 190 n. 1-2, p. 114-126 How to Cite?
AbstractVortex patterns associated with the sinh-Poisson equation arise in a remarkable manner as relaxation states of the Navier-Stokes equations. Here, doubly periodic and multiple-pole solutions of the sinh-Poisson equation are generated via the Hirota bilinear operator formalism and exploitation of the phenomenon of coalescence of wave numbers. It is then shown how the multi-parameter reciprocal transformations of gas dynamics may be applied to a seed doubly periodic solution of the sinh-Poisson equation to generate associated periodic vortex structures valid in the subsonic flow of a generalized Kármán-Tsien gas. © 2005 Elsevier B.V. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/158955
ISSN
2014 Impact Factor: 1.266
2014 SCImago Journal Rankings: 1.104
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChow, KWen_US
dc.contributor.authorMak, CCen_US
dc.contributor.authorRogers, Cen_US
dc.contributor.authorSchief, WKen_US
dc.date.accessioned2012-08-08T09:04:46Z-
dc.date.available2012-08-08T09:04:46Z-
dc.date.issued2006en_US
dc.identifier.citationJournal Of Computational And Applied Mathematics, 2006, v. 190 n. 1-2, p. 114-126en_US
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://hdl.handle.net/10722/158955-
dc.description.abstractVortex patterns associated with the sinh-Poisson equation arise in a remarkable manner as relaxation states of the Navier-Stokes equations. Here, doubly periodic and multiple-pole solutions of the sinh-Poisson equation are generated via the Hirota bilinear operator formalism and exploitation of the phenomenon of coalescence of wave numbers. It is then shown how the multi-parameter reciprocal transformations of gas dynamics may be applied to a seed doubly periodic solution of the sinh-Poisson equation to generate associated periodic vortex structures valid in the subsonic flow of a generalized Kármán-Tsien gas. © 2005 Elsevier B.V. All rights reserved.en_US
dc.languageengen_US
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/camen_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.rightsJournal of Computational and Applied Mathematics. Copyright © Elsevier BV.-
dc.subjectReciprocal Transformationsen_US
dc.subjectSinh-Poisson Equationen_US
dc.subjectSubsonic Gas Dynamicsen_US
dc.titleDoubly periodic and multiple pole solutions of the sinh-Poisson equation: Application of reciprocal transformations in subsonic gas dynamicsen_US
dc.typeConference_Paperen_US
dc.identifier.emailChow, KW:kwchow@hku.hken_US
dc.identifier.authorityChow, KW=rp00112en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/j.cam.2004.12.042en_US
dc.identifier.scopuseid_2-s2.0-31944451677en_US
dc.identifier.hkuros109071-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-31944451677&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume190en_US
dc.identifier.issue1-2en_US
dc.identifier.spage114en_US
dc.identifier.epage126en_US
dc.identifier.isiWOS:000235851200008-
dc.publisher.placeNetherlandsen_US
dc.identifier.scopusauthoridChow, KW=13605209900en_US
dc.identifier.scopusauthoridMak, CC=36912196900en_US
dc.identifier.scopusauthoridRogers, C=7402363921en_US
dc.identifier.scopusauthoridSchief, WK=7006682640en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats