File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Singular-value-decomposition based scale invariant image matching

TitleSingular-value-decomposition based scale invariant image matching
Authors
KeywordsFeature Correspondence
Image Matching
Proximity Matrix
Scale Invariant
Svd-Based Matching
Issue Date2006
PublisherSPIE - International Society for Optical Engineering. The Journal's web site is located at http://spie.org/x1848.xml
Citation
Electronic Imaging 2006, San Jose, CA., 15-19 January 2006. In Proceedings of SPIE - The International Society For Optical Engineering, 2006, v. 6066, article no. 60660I How to Cite?
AbstractIn this paper, an image matching algorithm combining a SVD matching approach and scale invariant measure is proposed to relate images with large-scale variations. To obtain a better performance on handling redundant points, we modify the SVD matching approach which enforces the condition of minimal distance between the structures of point patterns at the same time ensures the likeliness of the matched points. Together with the adoption of scale invariant features, the proposed method can match features undergoing significant scale changes and provide a set of matches containing a high percentage of correct matches without any statistical outlier detection. © 2006 SPIE-IS&T.
Persistent Identifierhttp://hdl.handle.net/10722/158438
ISSN
2023 SCImago Journal Rankings: 0.152
References

 

DC FieldValueLanguage
dc.contributor.authorSze, WFen_US
dc.contributor.authorTang, WKen_US
dc.contributor.authorHung, YSen_US
dc.date.accessioned2012-08-08T08:59:37Z-
dc.date.available2012-08-08T08:59:37Z-
dc.date.issued2006en_US
dc.identifier.citationElectronic Imaging 2006, San Jose, CA., 15-19 January 2006. In Proceedings of SPIE - The International Society For Optical Engineering, 2006, v. 6066, article no. 60660Ien_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/10722/158438-
dc.description.abstractIn this paper, an image matching algorithm combining a SVD matching approach and scale invariant measure is proposed to relate images with large-scale variations. To obtain a better performance on handling redundant points, we modify the SVD matching approach which enforces the condition of minimal distance between the structures of point patterns at the same time ensures the likeliness of the matched points. Together with the adoption of scale invariant features, the proposed method can match features undergoing significant scale changes and provide a set of matches containing a high percentage of correct matches without any statistical outlier detection. © 2006 SPIE-IS&T.en_US
dc.languageengen_US
dc.publisherSPIE - International Society for Optical Engineering. The Journal's web site is located at http://spie.org/x1848.xmlen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.subjectFeature Correspondenceen_US
dc.subjectImage Matchingen_US
dc.subjectProximity Matrixen_US
dc.subjectScale Invarianten_US
dc.subjectSvd-Based Matchingen_US
dc.titleSingular-value-decomposition based scale invariant image matchingen_US
dc.typeConference_Paperen_US
dc.identifier.emailTang, WK:wktang@hku.hken_US
dc.identifier.emailHung, YS:yshung@eee.hku.hken_US
dc.identifier.authorityTang, WK=rp00175en_US
dc.identifier.authorityHung, YS=rp00220en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1117/12.642880-
dc.identifier.scopuseid_2-s2.0-33645662755en_US
dc.identifier.hkuros117223-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-33645662755&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume6066en_US
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridSze, WF=12804326800en_US
dc.identifier.scopusauthoridTang, WK=36790135500en_US
dc.identifier.scopusauthoridHung, YS=8091656200en_US
dc.customcontrol.immutablesml 151116 - merged-
dc.identifier.issnl0277-786X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats