File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: A multiplier-less 1-D and 2-D fast Fourier transform-like transformation using sum-of-powers-of-two (SOPOT) coefficients

TitleA multiplier-less 1-D and 2-D fast Fourier transform-like transformation using sum-of-powers-of-two (SOPOT) coefficients
Authors
Issue Date2002
Citation
Proceedings - Ieee International Symposium On Circuits And Systems, 2002, v. 4, p. IV/755-IV/757 How to Cite?
AbstractThis paper proposes a new multiplier-less approximation of the 1-D Discrete Fourier Transform (DFT) called the multiplier-less Fast Fourier Transform-like (ML-FFT) transformation. It parameterizes the twiddle factors in conventional radix-2n or split-radix FFT algorithms as certain rotation-like matrices and approximates the associated parameters using the sum-of-powers-of-two (SOPOT) or canonical signed digits (CSD) representations. The ML-FFT converges to the DFT when the number of SOPOT terms used increases and has an arithmetic complexity of O(Nlog2N) additions, where N = 2m is the transform length. Design results show that the ML-FFT offers flexible tradeoff between arithmetic complexity and numerical accuracy in approximating the DFT. Using the polynomial transformation, similar multiplier-less approximation of 2-D FFT is also obtained.
Persistent Identifierhttp://hdl.handle.net/10722/158337
ISSN
2023 SCImago Journal Rankings: 0.307
References

 

DC FieldValueLanguage
dc.contributor.authorChan, SCen_US
dc.contributor.authorYiu, PMen_US
dc.date.accessioned2012-08-08T08:59:07Z-
dc.date.available2012-08-08T08:59:07Z-
dc.date.issued2002en_US
dc.identifier.citationProceedings - Ieee International Symposium On Circuits And Systems, 2002, v. 4, p. IV/755-IV/757en_US
dc.identifier.issn0271-4310en_US
dc.identifier.urihttp://hdl.handle.net/10722/158337-
dc.description.abstractThis paper proposes a new multiplier-less approximation of the 1-D Discrete Fourier Transform (DFT) called the multiplier-less Fast Fourier Transform-like (ML-FFT) transformation. It parameterizes the twiddle factors in conventional radix-2n or split-radix FFT algorithms as certain rotation-like matrices and approximates the associated parameters using the sum-of-powers-of-two (SOPOT) or canonical signed digits (CSD) representations. The ML-FFT converges to the DFT when the number of SOPOT terms used increases and has an arithmetic complexity of O(Nlog2N) additions, where N = 2m is the transform length. Design results show that the ML-FFT offers flexible tradeoff between arithmetic complexity and numerical accuracy in approximating the DFT. Using the polynomial transformation, similar multiplier-less approximation of 2-D FFT is also obtained.en_US
dc.languageengen_US
dc.relation.ispartofProceedings - IEEE International Symposium on Circuits and Systemsen_US
dc.titleA multiplier-less 1-D and 2-D fast Fourier transform-like transformation using sum-of-powers-of-two (SOPOT) coefficientsen_US
dc.typeConference_Paperen_US
dc.identifier.emailChan, SC:scchan@eee.hku.hken_US
dc.identifier.authorityChan, SC=rp00094en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-0036292871en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0036292871&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume4en_US
dc.identifier.spageIV/755en_US
dc.identifier.epageIV/757en_US
dc.identifier.scopusauthoridChan, SC=13310287100en_US
dc.identifier.scopusauthoridYiu, PM=6701686204en_US
dc.identifier.issnl0271-4310-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats