File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Fast odd sinusoidal transform algorithms

TitleFast odd sinusoidal transform algorithms
Authors
Issue Date1991
Citation
Midwest Symposium On Circuits And Systems, 1991, v. 2, p. 1014-1017 How to Cite?
AbstractIn a previous paper, the authors have shown that it is possible to map an odd-length type-II and type-III even discrete cosine transform (EDCT) to a real-valued DFT of the same length with sign changes and permutations only. In this work, the authors extend the approach to device-efficient algorithms for computing the odd discrete cosine and sine transforms (ODCT and ODST). It is found that a N point type-I ODCT can be reformulated as a (2N-1)-point DFT of a real-symmetric sequence. Also, by representing the odd indices in the type-II, -III and -IV transforms using the Ruritanian map, it is possible to construct a simple index mapping which maps the transforms to a type-I ODCT or ODST of the same length with permutations and sign changes only. Similar results are obtained for the odd sine transforms. Using the Kronecker matrix product representation of the multidimensional transforms all these algorithms can be generalized to higher dimensions.
Persistent Identifierhttp://hdl.handle.net/10722/158103

 

DC FieldValueLanguage
dc.contributor.authorChan, ShingChowen_US
dc.contributor.authorHo, KaLeungen_US
dc.date.accessioned2012-08-08T08:58:05Z-
dc.date.available2012-08-08T08:58:05Z-
dc.date.issued1991en_US
dc.identifier.citationMidwest Symposium On Circuits And Systems, 1991, v. 2, p. 1014-1017en_US
dc.identifier.urihttp://hdl.handle.net/10722/158103-
dc.description.abstractIn a previous paper, the authors have shown that it is possible to map an odd-length type-II and type-III even discrete cosine transform (EDCT) to a real-valued DFT of the same length with sign changes and permutations only. In this work, the authors extend the approach to device-efficient algorithms for computing the odd discrete cosine and sine transforms (ODCT and ODST). It is found that a N point type-I ODCT can be reformulated as a (2N-1)-point DFT of a real-symmetric sequence. Also, by representing the odd indices in the type-II, -III and -IV transforms using the Ruritanian map, it is possible to construct a simple index mapping which maps the transforms to a type-I ODCT or ODST of the same length with permutations and sign changes only. Similar results are obtained for the odd sine transforms. Using the Kronecker matrix product representation of the multidimensional transforms all these algorithms can be generalized to higher dimensions.en_US
dc.languageengen_US
dc.relation.ispartofMidwest Symposium on Circuits and Systemsen_US
dc.titleFast odd sinusoidal transform algorithmsen_US
dc.typeConference_Paperen_US
dc.identifier.emailChan, ShingChow:scchan@eee.hku.hken_US
dc.identifier.emailHo, KaLeung:klho@eee.hku.hken_US
dc.identifier.authorityChan, ShingChow=rp00094en_US
dc.identifier.authorityHo, KaLeung=rp00117en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.scopuseid_2-s2.0-0026407390en_US
dc.identifier.volume2en_US
dc.identifier.spage1014en_US
dc.identifier.epage1017en_US
dc.identifier.scopusauthoridChan, ShingChow=13310287100en_US
dc.identifier.scopusauthoridHo, KaLeung=7403581592en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats