File Download
  • No File Attached
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Short-Range Surface Plasmon Polaritons for Extraordinary Low Transmission Through Ultra-Thin Metal Films with Nanopatterns
  • Basic View
  • Metadata View
  • XML View
TitleShort-Range Surface Plasmon Polaritons for Extraordinary Low Transmission Through Ultra-Thin Metal Films with Nanopatterns
 
AuthorsGan, Q1 4
Bai, W2 4
Jiang, S5
Gao, Y4
Li, W3
Wu, W3
Bartoli, FJ4
 
KeywordsPlasmons
Surface Waves
Ultra-Thin Metal Films
Waveguides
 
Issue Date2012
 
CitationPlasmonics, 2012, v. 7 n. 1, p. 47-52 [How to Cite?]
DOI: http://dx.doi.org/10.1007/s11468-011-9274-8
 
AbstractWe provide both experimental and theoretical investigation on extraordinary low transmission through one-dimensional nanoslit and two-dimensional nanohole arrays on ultra-thin metal films. Unambiguous proofs demonstrate that short-range surface plasmon polaritons play a key role leading to this novel phenomenon, which could be useful for creating new polarization filters and other integrated plasmonic components. © 2011 Springer Science+Business Media, LLC.
 
ISSN1557-1955
2013 Impact Factor: 2.738
2013 SCImago Journal Rankings: 1.233
 
DOIhttp://dx.doi.org/10.1007/s11468-011-9274-8
 
ISI Accession Number IDWOS:000301480400008
Funding AgencyGrant Number
NSF0901324
NSFC51001029
Funding Information:

Q. Gan, W. Bai, Y. Gao, and F. Bartoli are supported by NSF (Award no. 0901324). SH Jiang is supported by NSFC (Award no. 51001029). The authors appreciate Mr. Lei Wang in Fudan University for the assistance in numerical modeling.

 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorGan, Q
 
dc.contributor.authorBai, W
 
dc.contributor.authorJiang, S
 
dc.contributor.authorGao, Y
 
dc.contributor.authorLi, W
 
dc.contributor.authorWu, W
 
dc.contributor.authorBartoli, FJ
 
dc.date.accessioned2012-08-08T08:45:40Z
 
dc.date.available2012-08-08T08:45:40Z
 
dc.date.issued2012
 
dc.description.abstractWe provide both experimental and theoretical investigation on extraordinary low transmission through one-dimensional nanoslit and two-dimensional nanohole arrays on ultra-thin metal films. Unambiguous proofs demonstrate that short-range surface plasmon polaritons play a key role leading to this novel phenomenon, which could be useful for creating new polarization filters and other integrated plasmonic components. © 2011 Springer Science+Business Media, LLC.
 
dc.description.natureLink_to_subscribed_fulltext
 
dc.identifier.citationPlasmonics, 2012, v. 7 n. 1, p. 47-52 [How to Cite?]
DOI: http://dx.doi.org/10.1007/s11468-011-9274-8
 
dc.identifier.citeulike9689819
 
dc.identifier.doihttp://dx.doi.org/10.1007/s11468-011-9274-8
 
dc.identifier.epage52
 
dc.identifier.isiWOS:000301480400008
Funding AgencyGrant Number
NSF0901324
NSFC51001029
Funding Information:

Q. Gan, W. Bai, Y. Gao, and F. Bartoli are supported by NSF (Award no. 0901324). SH Jiang is supported by NSFC (Award no. 51001029). The authors appreciate Mr. Lei Wang in Fudan University for the assistance in numerical modeling.

 
dc.identifier.issn1557-1955
2013 Impact Factor: 2.738
2013 SCImago Journal Rankings: 1.233
 
dc.identifier.issue1
 
dc.identifier.scopuseid_2-s2.0-84857994058
 
dc.identifier.spage47
 
dc.identifier.urihttp://hdl.handle.net/10722/157177
 
dc.identifier.volume7
 
dc.languageeng
 
dc.publisher.placeUnited States
 
dc.relation.ispartofPlasmonics
 
dc.relation.referencesReferences in Scopus
 
dc.subjectPlasmons
 
dc.subjectSurface Waves
 
dc.subjectUltra-Thin Metal Films
 
dc.subjectWaveguides
 
dc.titleShort-Range Surface Plasmon Polaritons for Extraordinary Low Transmission Through Ultra-Thin Metal Films with Nanopatterns
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Gan, Q</contributor.author>
<contributor.author>Bai, W</contributor.author>
<contributor.author>Jiang, S</contributor.author>
<contributor.author>Gao, Y</contributor.author>
<contributor.author>Li, W</contributor.author>
<contributor.author>Wu, W</contributor.author>
<contributor.author>Bartoli, FJ</contributor.author>
<date.accessioned>2012-08-08T08:45:40Z</date.accessioned>
<date.available>2012-08-08T08:45:40Z</date.available>
<date.issued>2012</date.issued>
<identifier.citation>Plasmonics, 2012, v. 7 n. 1, p. 47-52</identifier.citation>
<identifier.issn>1557-1955</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/157177</identifier.uri>
<description.abstract>We provide both experimental and theoretical investigation on extraordinary low transmission through one-dimensional nanoslit and two-dimensional nanohole arrays on ultra-thin metal films. Unambiguous proofs demonstrate that short-range surface plasmon polaritons play a key role leading to this novel phenomenon, which could be useful for creating new polarization filters and other integrated plasmonic components. &#169; 2011 Springer Science+Business Media, LLC.</description.abstract>
<language>eng</language>
<relation.ispartof>Plasmonics</relation.ispartof>
<subject>Plasmons</subject>
<subject>Surface Waves</subject>
<subject>Ultra-Thin Metal Films</subject>
<subject>Waveguides</subject>
<title>Short-Range Surface Plasmon Polaritons for Extraordinary Low Transmission Through Ultra-Thin Metal Films with Nanopatterns</title>
<type>Article</type>
<description.nature>Link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1007/s11468-011-9274-8</identifier.doi>
<identifier.scopus>eid_2-s2.0-84857994058</identifier.scopus>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-84857994058&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>7</identifier.volume>
<identifier.issue>1</identifier.issue>
<identifier.spage>47</identifier.spage>
<identifier.epage>52</identifier.epage>
<identifier.isi>WOS:000301480400008</identifier.isi>
<publisher.place>United States</publisher.place>
<identifier.citeulike>9689819</identifier.citeulike>
</item>
Author Affiliations
  1. University at Buffalo State University of New York
  2. Institute of Semiconductors Chinese Academy of Sciences
  3. Hewlett Packard Laboratories
  4. Lehigh University
  5. Fudan University