File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1088/1751-8113/43/45/455214
- Scopus: eid_2-s2.0-78649671516
- WOS: WOS:000283792700018
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Ermakov-Ray-Reid systems in nonlinear optics
Title | Ermakov-Ray-Reid systems in nonlinear optics | ||||
---|---|---|---|---|---|
Authors | |||||
Issue Date | 2010 | ||||
Citation | Journal Of Physics A: Mathematical And Theoretical, 2010, v. 43 n. 45 How to Cite? | ||||
Abstract | A hydrodynamics-type system incorporating a Madelung-Bohm-type quantum potential, as derived by Wagner et al via Maxwell's equations and the paraxial approximation in nonlinear optics, is reduced to a nonlinear Schrödinger canonical form. A two-parameter nonlinear Ermakov-Ray-Reid system that arises from this model, and which governs the evolution of beam radii in an elliptically polarised medium is shown to be reducible to a classical Pöschl-Teller equation. A class of exact solutions to the Ermakov-type system is constructed in terms of elliptic dn functions. It is established that integrable twocomponent Ermakov-Ray-Reid subsystems likewise arise in a coupled (2+1)-dimensional nonlinear optics model descriptive of the two-pulse interaction in a Kerr medium. The Hamiltonian structure of these subsystems allows their complete integration. © 2010 IOP Publishing Ltd. | ||||
Persistent Identifier | http://hdl.handle.net/10722/157098 | ||||
ISSN | 2023 Impact Factor: 2.0 2023 SCImago Journal Rankings: 0.769 | ||||
ISI Accession Number ID |
Funding Information: This research was supported, in part, by Hong Kong Research Grants Council Project no 501908 (CR) and HKU 712008E (KC). | ||||
References | |||||
Grants |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rogers, C | en_US |
dc.contributor.author | Malomed, B | en_US |
dc.contributor.author | Chow, K | en_US |
dc.contributor.author | An, H | en_US |
dc.date.accessioned | 2012-08-08T08:45:19Z | - |
dc.date.available | 2012-08-08T08:45:19Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.citation | Journal Of Physics A: Mathematical And Theoretical, 2010, v. 43 n. 45 | en_US |
dc.identifier.issn | 1751-8113 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/157098 | - |
dc.description.abstract | A hydrodynamics-type system incorporating a Madelung-Bohm-type quantum potential, as derived by Wagner et al via Maxwell's equations and the paraxial approximation in nonlinear optics, is reduced to a nonlinear Schrödinger canonical form. A two-parameter nonlinear Ermakov-Ray-Reid system that arises from this model, and which governs the evolution of beam radii in an elliptically polarised medium is shown to be reducible to a classical Pöschl-Teller equation. A class of exact solutions to the Ermakov-type system is constructed in terms of elliptic dn functions. It is established that integrable twocomponent Ermakov-Ray-Reid subsystems likewise arise in a coupled (2+1)-dimensional nonlinear optics model descriptive of the two-pulse interaction in a Kerr medium. The Hamiltonian structure of these subsystems allows their complete integration. © 2010 IOP Publishing Ltd. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Journal of Physics A: Mathematical and Theoretical | en_US |
dc.title | Ermakov-Ray-Reid systems in nonlinear optics | en_US |
dc.type | Article | en_US |
dc.identifier.email | Chow, K:kwchow@hku.hk | en_US |
dc.identifier.authority | Chow, K=rp00112 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1088/1751-8113/43/45/455214 | en_US |
dc.identifier.scopus | eid_2-s2.0-78649671516 | en_US |
dc.identifier.hkuros | 185511 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-78649671516&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 43 | en_US |
dc.identifier.issue | 45 | en_US |
dc.identifier.isi | WOS:000283792700018 | - |
dc.relation.project | Wave propagation in non-uniform media: Effects of amplification / attenuation and marginal stability | - |
dc.identifier.scopusauthorid | Rogers, C=7402363921 | en_US |
dc.identifier.scopusauthorid | Malomed, B=35555126200 | en_US |
dc.identifier.scopusauthorid | Chow, K=13605209900 | en_US |
dc.identifier.scopusauthorid | An, H=7202277419 | en_US |
dc.identifier.issnl | 1751-8113 | - |