File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Ermakov-Ray-Reid systems in nonlinear optics

TitleErmakov-Ray-Reid systems in nonlinear optics
Authors
Issue Date2010
Citation
Journal Of Physics A: Mathematical And Theoretical, 2010, v. 43 n. 45 How to Cite?
AbstractA hydrodynamics-type system incorporating a Madelung-Bohm-type quantum potential, as derived by Wagner et al via Maxwell's equations and the paraxial approximation in nonlinear optics, is reduced to a nonlinear Schrödinger canonical form. A two-parameter nonlinear Ermakov-Ray-Reid system that arises from this model, and which governs the evolution of beam radii in an elliptically polarised medium is shown to be reducible to a classical Pöschl-Teller equation. A class of exact solutions to the Ermakov-type system is constructed in terms of elliptic dn functions. It is established that integrable twocomponent Ermakov-Ray-Reid subsystems likewise arise in a coupled (2+1)-dimensional nonlinear optics model descriptive of the two-pulse interaction in a Kerr medium. The Hamiltonian structure of these subsystems allows their complete integration. © 2010 IOP Publishing Ltd.
Persistent Identifierhttp://hdl.handle.net/10722/157098
ISSN
2023 Impact Factor: 2.0
2023 SCImago Journal Rankings: 0.769
ISI Accession Number ID
Funding AgencyGrant Number
Hong Kong Research Grants Council501908
HKU 712008E
Funding Information:

This research was supported, in part, by Hong Kong Research Grants Council Project no 501908 (CR) and HKU 712008E (KC).

References
Grants

 

DC FieldValueLanguage
dc.contributor.authorRogers, Cen_US
dc.contributor.authorMalomed, Ben_US
dc.contributor.authorChow, Ken_US
dc.contributor.authorAn, Hen_US
dc.date.accessioned2012-08-08T08:45:19Z-
dc.date.available2012-08-08T08:45:19Z-
dc.date.issued2010en_US
dc.identifier.citationJournal Of Physics A: Mathematical And Theoretical, 2010, v. 43 n. 45en_US
dc.identifier.issn1751-8113en_US
dc.identifier.urihttp://hdl.handle.net/10722/157098-
dc.description.abstractA hydrodynamics-type system incorporating a Madelung-Bohm-type quantum potential, as derived by Wagner et al via Maxwell's equations and the paraxial approximation in nonlinear optics, is reduced to a nonlinear Schrödinger canonical form. A two-parameter nonlinear Ermakov-Ray-Reid system that arises from this model, and which governs the evolution of beam radii in an elliptically polarised medium is shown to be reducible to a classical Pöschl-Teller equation. A class of exact solutions to the Ermakov-type system is constructed in terms of elliptic dn functions. It is established that integrable twocomponent Ermakov-Ray-Reid subsystems likewise arise in a coupled (2+1)-dimensional nonlinear optics model descriptive of the two-pulse interaction in a Kerr medium. The Hamiltonian structure of these subsystems allows their complete integration. © 2010 IOP Publishing Ltd.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Physics A: Mathematical and Theoreticalen_US
dc.titleErmakov-Ray-Reid systems in nonlinear opticsen_US
dc.typeArticleen_US
dc.identifier.emailChow, K:kwchow@hku.hken_US
dc.identifier.authorityChow, K=rp00112en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1088/1751-8113/43/45/455214en_US
dc.identifier.scopuseid_2-s2.0-78649671516en_US
dc.identifier.hkuros185511-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-78649671516&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume43en_US
dc.identifier.issue45en_US
dc.identifier.isiWOS:000283792700018-
dc.relation.projectWave propagation in non-uniform media: Effects of amplification / attenuation and marginal stability-
dc.identifier.scopusauthoridRogers, C=7402363921en_US
dc.identifier.scopusauthoridMalomed, B=35555126200en_US
dc.identifier.scopusauthoridChow, K=13605209900en_US
dc.identifier.scopusauthoridAn, H=7202277419en_US
dc.identifier.issnl1751-8113-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats