File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by hyperbolic Lindstedt-Poincaré method

TitleHomoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by hyperbolic Lindstedt-Poincaré method
Authors
KeywordsHeteroclinic Orbit
Homoclinic Orbit
Lindstedt-Poincaré Method
Nonlinear Autonomous Oscillator
Issue Date2010
Citation
Science China Technological Sciences, 2010, v. 53 n. 3, p. 692-702 How to Cite?
AbstractThe hyperbolic Lindstedt-Poincaré method is applied to determine the homoclinic and heteroclinic solutions of cubic strongly nonlinear oscillators of the form x + c1 x + c3 x3 = εf(μ,x, ẋ) . In the method, the hyperbolic functions are employed instead of the periodic functions in the Lindstedt-Poincaré procedure. Critical value of parameter μ under which there exists homoclinic or heteroclinic orbit can be determined by the perturbation procedure. Typical applications are studied in detail. To illustrate the accuracy of the present method, its predictions are compared with those of Runge-Kutta method. © 2010 Science in China Press and Springer-Verlag Berlin Heidelberg.
Persistent Identifierhttp://hdl.handle.net/10722/157064
ISSN
2015 Impact Factor: 1.441
2015 SCImago Journal Rankings: 0.658
ISI Accession Number ID
Funding AgencyGrant Number
National Natural Science Foundation of China10672193
10972240
Fu Lan Scholarship of Sun Yat-sen University
University of Hong Kong (CRGC)
Funding Information:

This work was supported by the National Natural Science Foundation of China (Grant Nos. 10672193, 10972240), Fu Lan Scholarship of Sun Yat-sen University, and the University of Hong Kong (CRGC grant).

References

 

DC FieldValueLanguage
dc.contributor.authorChen, Sen_US
dc.contributor.authorChen, Yen_US
dc.contributor.authorSze, KYen_US
dc.date.accessioned2012-08-08T08:45:10Z-
dc.date.available2012-08-08T08:45:10Z-
dc.date.issued2010en_US
dc.identifier.citationScience China Technological Sciences, 2010, v. 53 n. 3, p. 692-702en_US
dc.identifier.issn1674-7321en_US
dc.identifier.urihttp://hdl.handle.net/10722/157064-
dc.description.abstractThe hyperbolic Lindstedt-Poincaré method is applied to determine the homoclinic and heteroclinic solutions of cubic strongly nonlinear oscillators of the form x + c1 x + c3 x3 = εf(μ,x, ẋ) . In the method, the hyperbolic functions are employed instead of the periodic functions in the Lindstedt-Poincaré procedure. Critical value of parameter μ under which there exists homoclinic or heteroclinic orbit can be determined by the perturbation procedure. Typical applications are studied in detail. To illustrate the accuracy of the present method, its predictions are compared with those of Runge-Kutta method. © 2010 Science in China Press and Springer-Verlag Berlin Heidelberg.en_US
dc.languageengen_US
dc.relation.ispartofScience China Technological Sciencesen_US
dc.subjectHeteroclinic Orbiten_US
dc.subjectHomoclinic Orbiten_US
dc.subjectLindstedt-Poincaré Methoden_US
dc.subjectNonlinear Autonomous Oscillatoren_US
dc.titleHomoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by hyperbolic Lindstedt-Poincaré methoden_US
dc.typeArticleen_US
dc.identifier.emailSze, KY:szeky@graduate.hku.hken_US
dc.identifier.authoritySze, KY=rp00171en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1007/s11431-010-0069-5en_US
dc.identifier.scopuseid_2-s2.0-77950835777en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-77950835777&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume53en_US
dc.identifier.issue3en_US
dc.identifier.spage692en_US
dc.identifier.epage702en_US
dc.identifier.isiWOS:000276807400011-
dc.identifier.scopusauthoridChen, S=13303161800en_US
dc.identifier.scopusauthoridChen, Y=25925765400en_US
dc.identifier.scopusauthoridSze, KY=7006735060en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats