File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.chaos.2009.03.146
- Scopus: eid_2-s2.0-67651202366
- WOS: WOS:000269425200014
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Propagating wave patterns for the 'resonant' Davey-Stewartson system
Title | Propagating wave patterns for the 'resonant' Davey-Stewartson system |
---|---|
Authors | |
Issue Date | 2009 |
Publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/chaos |
Citation | Chaos, Solitons And Fractals, 2009, v. 42 n. 5, p. 2707-2712 How to Cite? |
Abstract | The resonant nonlinear Schrödinger (RNLS) equation exhibits the usual cubic nonlinearity present in the classical nonlinear Schrödinger (NLS) equation together with an additional nonlinear term involving the modulus of the wave envelope. It arises in the context of the propagation of long magneto-acoustic waves in cold, collisionless plasma and in capillarity theory. Here, a natural (2 + 1) (2 spatial and 1 temporal)-dimensional version of the RNLS equation is introduced, termed the 'resonant' Davey-Stewartson system. The multi-linear variable separation approach is used to generate a class of exact solutions, which will describe propagating, doubly periodic wave patterns. © 2009 Elsevier Ltd. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/157017 |
ISSN | 2023 Impact Factor: 5.3 2023 SCImago Journal Rankings: 1.349 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tang, XY | en_US |
dc.contributor.author | Chow, KW | en_US |
dc.contributor.author | Rogers, C | en_US |
dc.date.accessioned | 2012-08-08T08:44:58Z | - |
dc.date.available | 2012-08-08T08:44:58Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.citation | Chaos, Solitons And Fractals, 2009, v. 42 n. 5, p. 2707-2712 | en_US |
dc.identifier.issn | 0960-0779 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/157017 | - |
dc.description.abstract | The resonant nonlinear Schrödinger (RNLS) equation exhibits the usual cubic nonlinearity present in the classical nonlinear Schrödinger (NLS) equation together with an additional nonlinear term involving the modulus of the wave envelope. It arises in the context of the propagation of long magneto-acoustic waves in cold, collisionless plasma and in capillarity theory. Here, a natural (2 + 1) (2 spatial and 1 temporal)-dimensional version of the RNLS equation is introduced, termed the 'resonant' Davey-Stewartson system. The multi-linear variable separation approach is used to generate a class of exact solutions, which will describe propagating, doubly periodic wave patterns. © 2009 Elsevier Ltd. All rights reserved. | en_US |
dc.language | eng | en_US |
dc.publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/chaos | en_US |
dc.relation.ispartof | Chaos, Solitons and Fractals | en_US |
dc.title | Propagating wave patterns for the 'resonant' Davey-Stewartson system | en_US |
dc.type | Article | en_US |
dc.identifier.email | Chow, KW:kwchow@hku.hk | en_US |
dc.identifier.authority | Chow, KW=rp00112 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1016/j.chaos.2009.03.146 | en_US |
dc.identifier.scopus | eid_2-s2.0-67651202366 | en_US |
dc.identifier.hkuros | 161853 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-67651202366&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 42 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.spage | 2707 | en_US |
dc.identifier.epage | 2712 | en_US |
dc.identifier.isi | WOS:000269425200014 | - |
dc.publisher.place | United Kingdom | en_US |
dc.identifier.scopusauthorid | Tang, XY=26632378700 | en_US |
dc.identifier.scopusauthorid | Chow, KW=13605209900 | en_US |
dc.identifier.scopusauthorid | Rogers, C=7402363921 | en_US |
dc.identifier.citeulike | 5469421 | - |
dc.identifier.issnl | 0960-0779 | - |