File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators

TitleA hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators
Authors
Issue Date2009
PublisherElsevier Ltd. The Journal's web site is located at http://www.elsevier.com/locate/jsvi
Citation
Journal Of Sound And Vibration, 2009, v. 322 n. 1-2, p. 381-392 How to Cite?
AbstractA hyperbolic perturbation method is presented for determining the homoclinic solution of certain strongly nonlinear autonomous oscillators of the form over(x, ̈) + c1 x + c2 x2 = ε{lunate} f (μ, x, over(x, ̇)) in which hyperbolic functions can be employed instead of the usual periodic functions in the perturbation procedure. The generalized van der Pol oscillator in which f (μ, x, over(x, ̇)) = (μ + μ1 x - μ2 x2) over(x, ̇) is studied. To illustrate the accuracy of the present method, its predictions are compared with those of Runge-Kutta method. © 2008 Elsevier Ltd. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/156995
ISSN
2015 Impact Factor: 2.107
2015 SCImago Journal Rankings: 1.494
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChen, SHen_US
dc.contributor.authorChen, YYen_US
dc.contributor.authorSze, KYen_US
dc.date.accessioned2012-08-08T08:44:52Z-
dc.date.available2012-08-08T08:44:52Z-
dc.date.issued2009en_US
dc.identifier.citationJournal Of Sound And Vibration, 2009, v. 322 n. 1-2, p. 381-392en_US
dc.identifier.issn0022-460Xen_US
dc.identifier.urihttp://hdl.handle.net/10722/156995-
dc.description.abstractA hyperbolic perturbation method is presented for determining the homoclinic solution of certain strongly nonlinear autonomous oscillators of the form over(x, ̈) + c1 x + c2 x2 = ε{lunate} f (μ, x, over(x, ̇)) in which hyperbolic functions can be employed instead of the usual periodic functions in the perturbation procedure. The generalized van der Pol oscillator in which f (μ, x, over(x, ̇)) = (μ + μ1 x - μ2 x2) over(x, ̇) is studied. To illustrate the accuracy of the present method, its predictions are compared with those of Runge-Kutta method. © 2008 Elsevier Ltd. All rights reserved.en_US
dc.languageengen_US
dc.publisherElsevier Ltd. The Journal's web site is located at http://www.elsevier.com/locate/jsvien_US
dc.relation.ispartofJournal of Sound and Vibrationen_US
dc.titleA hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillatorsen_US
dc.typeArticleen_US
dc.identifier.emailSze, KY:szeky@graduate.hku.hken_US
dc.identifier.authoritySze, KY=rp00171en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/j.jsv.2008.11.015en_US
dc.identifier.scopuseid_2-s2.0-61749088860en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-61749088860&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume322en_US
dc.identifier.issue1-2en_US
dc.identifier.spage381en_US
dc.identifier.epage392en_US
dc.identifier.isiWOS:000264895800024-
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridChen, SH=13303161800en_US
dc.identifier.scopusauthoridChen, YY=25925765400en_US
dc.identifier.scopusauthoridSze, KY=7006735060en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats