File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jsv.2008.11.015
- Scopus: eid_2-s2.0-61749088860
- WOS: WOS:000264895800024
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators
Title | A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators |
---|---|
Authors | |
Issue Date | 2009 |
Publisher | Elsevier Ltd. The Journal's web site is located at http://www.elsevier.com/locate/jsvi |
Citation | Journal Of Sound And Vibration, 2009, v. 322 n. 1-2, p. 381-392 How to Cite? |
Abstract | A hyperbolic perturbation method is presented for determining the homoclinic solution of certain strongly nonlinear autonomous oscillators of the form over(x, ̈) + c1 x + c2 x2 = ε{lunate} f (μ, x, over(x, ̇)) in which hyperbolic functions can be employed instead of the usual periodic functions in the perturbation procedure. The generalized van der Pol oscillator in which f (μ, x, over(x, ̇)) = (μ + μ1 x - μ2 x2) over(x, ̇) is studied. To illustrate the accuracy of the present method, its predictions are compared with those of Runge-Kutta method. © 2008 Elsevier Ltd. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/156995 |
ISSN | 2023 Impact Factor: 4.3 2023 SCImago Journal Rankings: 1.225 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, SH | en_US |
dc.contributor.author | Chen, YY | en_US |
dc.contributor.author | Sze, KY | en_US |
dc.date.accessioned | 2012-08-08T08:44:52Z | - |
dc.date.available | 2012-08-08T08:44:52Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.citation | Journal Of Sound And Vibration, 2009, v. 322 n. 1-2, p. 381-392 | en_US |
dc.identifier.issn | 0022-460X | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/156995 | - |
dc.description.abstract | A hyperbolic perturbation method is presented for determining the homoclinic solution of certain strongly nonlinear autonomous oscillators of the form over(x, ̈) + c1 x + c2 x2 = ε{lunate} f (μ, x, over(x, ̇)) in which hyperbolic functions can be employed instead of the usual periodic functions in the perturbation procedure. The generalized van der Pol oscillator in which f (μ, x, over(x, ̇)) = (μ + μ1 x - μ2 x2) over(x, ̇) is studied. To illustrate the accuracy of the present method, its predictions are compared with those of Runge-Kutta method. © 2008 Elsevier Ltd. All rights reserved. | en_US |
dc.language | eng | en_US |
dc.publisher | Elsevier Ltd. The Journal's web site is located at http://www.elsevier.com/locate/jsvi | en_US |
dc.relation.ispartof | Journal of Sound and Vibration | en_US |
dc.title | A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators | en_US |
dc.type | Article | en_US |
dc.identifier.email | Sze, KY:szeky@graduate.hku.hk | en_US |
dc.identifier.authority | Sze, KY=rp00171 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1016/j.jsv.2008.11.015 | en_US |
dc.identifier.scopus | eid_2-s2.0-61749088860 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-61749088860&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 322 | en_US |
dc.identifier.issue | 1-2 | en_US |
dc.identifier.spage | 381 | en_US |
dc.identifier.epage | 392 | en_US |
dc.identifier.isi | WOS:000264895800024 | - |
dc.publisher.place | United Kingdom | en_US |
dc.identifier.scopusauthorid | Chen, SH=13303161800 | en_US |
dc.identifier.scopusauthorid | Chen, YY=25925765400 | en_US |
dc.identifier.scopusauthorid | Sze, KY=7006735060 | en_US |
dc.identifier.issnl | 0022-460X | - |