File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: H2 and mixed H2/H∞ stabilization and disturbance attenuation for differential linear repetitive processes
  • Basic View
  • Metadata View
  • XML View
TitleH2 and mixed H2/H∞ stabilization and disturbance attenuation for differential linear repetitive processes
 
AuthorsPaszke, W3
Gałkowski, K4
Rogers, E2
Lam, J1
 
KeywordsDifferential Linear Repetitive Processes
H2 And Mixed And Mixed H2h∞ Control
Linear Matrix Inequalities
 
Issue Date2008
 
CitationIEEE Transactions On Circuits And Systems I: Regular Papers, 2008, v. 55 n. 9, p. 2813-2826 [How to Cite?]
DOI: http://dx.doi.org/10.1109/TCSI.2008.922026
 
AbstractRepetitive processes are a distinct class of two-dimensional systems (i.e., information propagation in two independent directions) of both systems theoretic and applications interest. A systems theory for them cannot be obtained by direct extension of existing techniques from standard (termed 1-D here) or, in many cases, two-dimensional (2-D) systems theory. Here, we give new results towards the development of such a theory in H2 and mixed H2/H∞ settings. These results are for the sub-class of so-called differential linear repetitive processes and focus on the fundamental problems of stabilization and disturbance attenuation. © 2008 IEEE.
 
ISSN1057-7122
 
DOIhttp://dx.doi.org/10.1109/TCSI.2008.922026
 
ISI Accession Number IDWOS:000260863700035
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorPaszke, W
 
dc.contributor.authorGałkowski, K
 
dc.contributor.authorRogers, E
 
dc.contributor.authorLam, J
 
dc.date.accessioned2012-08-08T08:44:50Z
 
dc.date.available2012-08-08T08:44:50Z
 
dc.date.issued2008
 
dc.description.abstractRepetitive processes are a distinct class of two-dimensional systems (i.e., information propagation in two independent directions) of both systems theoretic and applications interest. A systems theory for them cannot be obtained by direct extension of existing techniques from standard (termed 1-D here) or, in many cases, two-dimensional (2-D) systems theory. Here, we give new results towards the development of such a theory in H2 and mixed H2/H∞ settings. These results are for the sub-class of so-called differential linear repetitive processes and focus on the fundamental problems of stabilization and disturbance attenuation. © 2008 IEEE.
 
dc.description.naturePublished_or_final_version
 
dc.identifier.citationIEEE Transactions On Circuits And Systems I: Regular Papers, 2008, v. 55 n. 9, p. 2813-2826 [How to Cite?]
DOI: http://dx.doi.org/10.1109/TCSI.2008.922026
 
dc.identifier.doihttp://dx.doi.org/10.1109/TCSI.2008.922026
 
dc.identifier.epage2826
 
dc.identifier.hkuros164154
 
dc.identifier.isiWOS:000260863700035
 
dc.identifier.issn1057-7122
 
dc.identifier.issue9
 
dc.identifier.scopuseid_2-s2.0-56349144401
 
dc.identifier.spage2813
 
dc.identifier.urihttp://hdl.handle.net/10722/156987
 
dc.identifier.volume55
 
dc.languageeng
 
dc.publisher.placeUnited States
 
dc.relation.ispartofIEEE Transactions on Circuits and Systems I: Regular Papers
 
dc.relation.referencesReferences in Scopus
 
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License
 
dc.rights©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
 
dc.subjectDifferential Linear Repetitive Processes
 
dc.subjectH2 And Mixed And Mixed H2h∞ Control
 
dc.subjectLinear Matrix Inequalities
 
dc.titleH2 and mixed H2/H∞ stabilization and disturbance attenuation for differential linear repetitive processes
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Paszke, W</contributor.author>
<contributor.author>Ga&#322;kowski, K</contributor.author>
<contributor.author>Rogers, E</contributor.author>
<contributor.author>Lam, J</contributor.author>
<date.accessioned>2012-08-08T08:44:50Z</date.accessioned>
<date.available>2012-08-08T08:44:50Z</date.available>
<date.issued>2008</date.issued>
<identifier.citation>IEEE Transactions On Circuits And Systems I: Regular Papers, 2008, v. 55 n. 9, p. 2813-2826</identifier.citation>
<identifier.issn>1057-7122</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/156987</identifier.uri>
<description.abstract>Repetitive processes are a distinct class of two-dimensional systems (i.e., information propagation in two independent directions) of both systems theoretic and applications interest. A systems theory for them cannot be obtained by direct extension of existing techniques from standard (termed 1-D here) or, in many cases, two-dimensional (2-D) systems theory. Here, we give new results towards the development of such a theory in H2 and mixed H2/H&#8734; settings. These results are for the sub-class of so-called differential linear repetitive processes and focus on the fundamental problems of stabilization and disturbance attenuation. &#169; 2008 IEEE.</description.abstract>
<language>eng</language>
<relation.ispartof>IEEE Transactions on Circuits and Systems I: Regular Papers</relation.ispartof>
<rights>Creative Commons: Attribution 3.0 Hong Kong License</rights>
<rights>&#169;2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</rights>
<subject>Differential Linear Repetitive Processes</subject>
<subject>H2 And Mixed And Mixed H2h&#8734; Control</subject>
<subject>Linear Matrix Inequalities</subject>
<title>H2 and mixed H2/H&#8734; stabilization and disturbance attenuation for differential linear repetitive processes</title>
<type>Article</type>
<description.nature>Published_or_final_version</description.nature>
<identifier.doi>10.1109/TCSI.2008.922026</identifier.doi>
<identifier.scopus>eid_2-s2.0-56349144401</identifier.scopus>
<identifier.hkuros>164154</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-56349144401&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>55</identifier.volume>
<identifier.issue>9</identifier.issue>
<identifier.spage>2813</identifier.spage>
<identifier.epage>2826</identifier.epage>
<identifier.isi>WOS:000260863700035</identifier.isi>
<publisher.place>United States</publisher.place>
<bitstream.url>http://hub.hku.hk/bitstream/10722/156987/1/content.pdf</bitstream.url>
</item>
Author Affiliations
  1. The University of Hong Kong
  2. University of Southampton
  3. Technische Universiteit Eindhoven
  4. Uniwersytet Zielonogórski