File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: The discrete modified Korteweg-de Vries equation with non-vanishing boundary conditions: Interactions of solitons

TitleThe discrete modified Korteweg-de Vries equation with non-vanishing boundary conditions: Interactions of solitons
Authors
Issue Date2008
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/chaos
Citation
Chaos, Solitons And Fractals, 2008, v. 36 n. 2, p. 296-302 How to Cite?
AbstractThe discrete modified Korteweg-de Vries equation with negative cubic nonlinearity is considered for non-vanishing boundary condition in the far field. A Hirota bilinear form is established and expressions for 1- and 2-soliton are calculated. The amplitude of the soliton cannot exceed a maximum, and further increasing the wave number will just result in a solitary wave of larger width. This special class of solitary waves is termed 'plateau' solitons here. The interaction of a soliton of less than the maximum amplitude with such a 'plateau' soliton will result in a reversal of polarity of the smaller soliton during the interaction process. © 2006 Elsevier Ltd. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/156922
ISSN
2023 Impact Factor: 5.3
2023 SCImago Journal Rankings: 1.349
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorShek, ECMen_US
dc.contributor.authorChow, KWen_US
dc.date.accessioned2012-08-08T08:44:33Z-
dc.date.available2012-08-08T08:44:33Z-
dc.date.issued2008en_US
dc.identifier.citationChaos, Solitons And Fractals, 2008, v. 36 n. 2, p. 296-302en_US
dc.identifier.issn0960-0779en_US
dc.identifier.urihttp://hdl.handle.net/10722/156922-
dc.description.abstractThe discrete modified Korteweg-de Vries equation with negative cubic nonlinearity is considered for non-vanishing boundary condition in the far field. A Hirota bilinear form is established and expressions for 1- and 2-soliton are calculated. The amplitude of the soliton cannot exceed a maximum, and further increasing the wave number will just result in a solitary wave of larger width. This special class of solitary waves is termed 'plateau' solitons here. The interaction of a soliton of less than the maximum amplitude with such a 'plateau' soliton will result in a reversal of polarity of the smaller soliton during the interaction process. © 2006 Elsevier Ltd. All rights reserved.en_US
dc.languageengen_US
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/chaosen_US
dc.relation.ispartofChaos, Solitons and Fractalsen_US
dc.titleThe discrete modified Korteweg-de Vries equation with non-vanishing boundary conditions: Interactions of solitonsen_US
dc.typeArticleen_US
dc.identifier.emailChow, KW:kwchow@hku.hken_US
dc.identifier.authorityChow, KW=rp00112en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1016/j.chaos.2006.06.036en_US
dc.identifier.scopuseid_2-s2.0-35348903090en_US
dc.identifier.hkuros143435-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-35348903090&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume36en_US
dc.identifier.issue2en_US
dc.identifier.spage296en_US
dc.identifier.epage302en_US
dc.identifier.isiWOS:000252504100015-
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridShek, ECM=22836153600en_US
dc.identifier.scopusauthoridChow, KW=13605209900en_US
dc.identifier.issnl0960-0779-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats