File Download
  • No File Attached
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Robust synchronization criteria for recurrent neural networks via linear feedback
  • Basic View
  • Metadata View
  • XML View
TitleRobust synchronization criteria for recurrent neural networks via linear feedback
 
AuthorsHuang, X2 1
Lam, J3
Cao, J2
Xu, S4
 
KeywordsLinear Matrix Inequality
Lyapunov-Krasovskii Function
Recurrent Neural Networks
Robust Synchronization
 
Issue Date2007
 
PublisherWorld Scientific Publishing Co Pte Ltd. The Journal's web site is located at http://www.worldscinet.com/ijbc/ijbc.shtml
 
CitationInternational Journal Of Bifurcation And Chaos, 2007, v. 17 n. 8, p. 2723-2738 [How to Cite?]
DOI: http://dx.doi.org/10.1142/S0218127407018713
 
AbstractIn this paper, the robust synchronization problem is addressed for recurrent neural networks with time-varying delay by linear feedback control. Robustness in the present paper is referred to as the allowance of parameters mismatch between the drive system and the response system. Sufficient conditions for robust synchronization with a synchronization error bound, expressed as linear matrix inequality (LMI), are derived based on Lyapunov-Krasovskii functionals. Both delay-dependent and delay-independent conditions are obtained. Two examples are given to illustrate the results. © World Scientific Publishing Company.
 
ISSN0218-1274
2013 Impact Factor: 1.017
2013 SCImago Journal Rankings: 0.717
 
DOIhttp://dx.doi.org/10.1142/S0218127407018713
 
ISI Accession Number IDWOS:000253285200013
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorHuang, X
 
dc.contributor.authorLam, J
 
dc.contributor.authorCao, J
 
dc.contributor.authorXu, S
 
dc.date.accessioned2012-08-08T08:44:33Z
 
dc.date.available2012-08-08T08:44:33Z
 
dc.date.issued2007
 
dc.description.abstractIn this paper, the robust synchronization problem is addressed for recurrent neural networks with time-varying delay by linear feedback control. Robustness in the present paper is referred to as the allowance of parameters mismatch between the drive system and the response system. Sufficient conditions for robust synchronization with a synchronization error bound, expressed as linear matrix inequality (LMI), are derived based on Lyapunov-Krasovskii functionals. Both delay-dependent and delay-independent conditions are obtained. Two examples are given to illustrate the results. © World Scientific Publishing Company.
 
dc.description.naturelink_to_subscribed_fulltext
 
dc.identifier.citationInternational Journal Of Bifurcation And Chaos, 2007, v. 17 n. 8, p. 2723-2738 [How to Cite?]
DOI: http://dx.doi.org/10.1142/S0218127407018713
 
dc.identifier.doihttp://dx.doi.org/10.1142/S0218127407018713
 
dc.identifier.epage2738
 
dc.identifier.isiWOS:000253285200013
 
dc.identifier.issn0218-1274
2013 Impact Factor: 1.017
2013 SCImago Journal Rankings: 0.717
 
dc.identifier.issue8
 
dc.identifier.scopuseid_2-s2.0-34748850646
 
dc.identifier.spage2723
 
dc.identifier.urihttp://hdl.handle.net/10722/156918
 
dc.identifier.volume17
 
dc.languageeng
 
dc.publisherWorld Scientific Publishing Co Pte Ltd. The Journal's web site is located at http://www.worldscinet.com/ijbc/ijbc.shtml
 
dc.publisher.placeSingapore
 
dc.relation.ispartofInternational Journal of Bifurcation and Chaos
 
dc.relation.referencesReferences in Scopus
 
dc.subjectLinear Matrix Inequality
 
dc.subjectLyapunov-Krasovskii Function
 
dc.subjectRecurrent Neural Networks
 
dc.subjectRobust Synchronization
 
dc.titleRobust synchronization criteria for recurrent neural networks via linear feedback
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Huang, X</contributor.author>
<contributor.author>Lam, J</contributor.author>
<contributor.author>Cao, J</contributor.author>
<contributor.author>Xu, S</contributor.author>
<date.accessioned>2012-08-08T08:44:33Z</date.accessioned>
<date.available>2012-08-08T08:44:33Z</date.available>
<date.issued>2007</date.issued>
<identifier.citation>International Journal Of Bifurcation And Chaos, 2007, v. 17 n. 8, p. 2723-2738</identifier.citation>
<identifier.issn>0218-1274</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/156918</identifier.uri>
<description.abstract>In this paper, the robust synchronization problem is addressed for recurrent neural networks with time-varying delay by linear feedback control. Robustness in the present paper is referred to as the allowance of parameters mismatch between the drive system and the response system. Sufficient conditions for robust synchronization with a synchronization error bound, expressed as linear matrix inequality (LMI), are derived based on Lyapunov-Krasovskii functionals. Both delay-dependent and delay-independent conditions are obtained. Two examples are given to illustrate the results. &#169; World Scientific Publishing Company.</description.abstract>
<language>eng</language>
<publisher>World Scientific Publishing Co Pte Ltd. The Journal&apos;s web site is located at http://www.worldscinet.com/ijbc/ijbc.shtml</publisher>
<relation.ispartof>International Journal of Bifurcation and Chaos</relation.ispartof>
<subject>Linear Matrix Inequality</subject>
<subject>Lyapunov-Krasovskii Function</subject>
<subject>Recurrent Neural Networks</subject>
<subject>Robust Synchronization</subject>
<title>Robust synchronization criteria for recurrent neural networks via linear feedback</title>
<type>Article</type>
<description.nature>link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1142/S0218127407018713</identifier.doi>
<identifier.scopus>eid_2-s2.0-34748850646</identifier.scopus>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-34748850646&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>17</identifier.volume>
<identifier.issue>8</identifier.issue>
<identifier.spage>2723</identifier.spage>
<identifier.epage>2738</identifier.epage>
<identifier.isi>WOS:000253285200013</identifier.isi>
<publisher.place>Singapore</publisher.place>
</item>
Author Affiliations
  1. Shandong University of Science and Technology
  2. Southeast University
  3. City University of Hong Kong
  4. Nanjing University of Science and Technology