File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Novel solitary pulses for a variable-coefficient derivative nonlinear Schrödinger equation

TitleNovel solitary pulses for a variable-coefficient derivative nonlinear Schrödinger equation
Authors
KeywordsDerivative Nonlinear Schrödinger Equation
Variable Coefficient Chen-Lee-Liu Equation
Issue Date2007
PublisherInstitute of Pure and Applied Physics. The Journal's web site is located at http://www.ipap.jp/jpsj/index.htm
Citation
Journal Of The Physical Society Of Japan, 2007, v. 76 n. 7 How to Cite?
AbstractA derivative nonlinear Schrödinger equation with variable coefficient is considered. Special exact solutions in the form of a solitary pulse are obtained by the Hirota bilinear transformation. The essential ingredients are the identification of a special chirp factor and the use of wavenumbers dependent on time or space. The inclusion of damping or gain is necessary. The pulse may then undergo broadening or compression. Special cases, namely, exponential and algebraic dispersion coefficients, are discussed in detail. The case of exponential dispersion also permits the existence of a 2-soliton. This provides a strong hint for special properties, and suggests that further tests for integrability need to be performed. Finally, preliminary results on other types of exact solutions, e.g., periodic wave patterns, are reported. ©2007 The Physical Society of Japan.
Persistent Identifierhttp://hdl.handle.net/10722/156906
ISSN
2015 Impact Factor: 1.559
2015 SCImago Journal Rankings: 0.720
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChow, KWen_US
dc.contributor.authorYip, LPen_US
dc.contributor.authorGrimshaw, Ren_US
dc.date.accessioned2012-08-08T08:44:30Z-
dc.date.available2012-08-08T08:44:30Z-
dc.date.issued2007en_US
dc.identifier.citationJournal Of The Physical Society Of Japan, 2007, v. 76 n. 7en_US
dc.identifier.issn0031-9015en_US
dc.identifier.urihttp://hdl.handle.net/10722/156906-
dc.description.abstractA derivative nonlinear Schrödinger equation with variable coefficient is considered. Special exact solutions in the form of a solitary pulse are obtained by the Hirota bilinear transformation. The essential ingredients are the identification of a special chirp factor and the use of wavenumbers dependent on time or space. The inclusion of damping or gain is necessary. The pulse may then undergo broadening or compression. Special cases, namely, exponential and algebraic dispersion coefficients, are discussed in detail. The case of exponential dispersion also permits the existence of a 2-soliton. This provides a strong hint for special properties, and suggests that further tests for integrability need to be performed. Finally, preliminary results on other types of exact solutions, e.g., periodic wave patterns, are reported. ©2007 The Physical Society of Japan.en_US
dc.languageengen_US
dc.publisherInstitute of Pure and Applied Physics. The Journal's web site is located at http://www.ipap.jp/jpsj/index.htmen_US
dc.relation.ispartofJournal of the Physical Society of Japanen_US
dc.subjectDerivative Nonlinear Schrödinger Equationen_US
dc.subjectVariable Coefficient Chen-Lee-Liu Equationen_US
dc.titleNovel solitary pulses for a variable-coefficient derivative nonlinear Schrödinger equationen_US
dc.typeArticleen_US
dc.identifier.emailChow, KW:kwchow@hku.hken_US
dc.identifier.authorityChow, KW=rp00112en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1143/JPSJ.76.074004en_US
dc.identifier.scopuseid_2-s2.0-34547456102en_US
dc.identifier.hkuros129717-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-34547456102&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume76en_US
dc.identifier.issue7en_US
dc.identifier.isiWOS:000248244500020-
dc.publisher.placeJapanen_US
dc.identifier.scopusauthoridChow, KW=13605209900en_US
dc.identifier.scopusauthoridYip, LP=18039044200en_US
dc.identifier.scopusauthoridGrimshaw, R=35462748600en_US

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats